
On the Evolution of BPMN 2.0 Support and Implementation

Matthias Geiger, Simon Harrer, Jörg Lenhard and Guido Wirtz
Distributed Systems Group

University of Bamberg
Bamberg, Germany

{matthias.geiger, simon.harrer, joerg.lenhard, guido.wirtz}@uni-bamberg.de

Abstract—The Business Process Model and Notation 2.0
(BPMN) standard has been hailed as a major step in business
process modeling and automation. Recently, it has also been
accepted as an ISO standard. The expectation is that vendors
of business process management systems (BPMS) will switch to
the new standard and natively support its execution in process
engines.

This paper presents an analysis of the current state and
evolution of BPMN 2.0 support and implementation. We
investigate how current BPMN 2.0 implementers deal with the
standard, showing that native BPMN 2.0 execution still is an
exception. Most BPMS do not support the execution format,
despite claiming to be BPMN 2.0 compliant. Furthermore,
building on past work, we evaluate three process engines that
do provide native BPMN support and examine the evolution of
their degree of support over a three-year period. This lets us
delimit the areas of the standard that are considered important
by the implementers. Since there is hardly an increase in
supported features over the past three years, it seems that
the implementation of the standard is more or less seen as
finished by vendors and it is unlikely that features which are
not available by now will be implemented in the future.

Keywords-BPMN, process engine, software evolution, confor-
mance testing

I. INTRODUCTION

Business process management (BPM) is a broad discipline
with influence on other areas of computing research, such
as service composition [1]. BPM is strongly tailored to the
modeling of organizational processes in dedicated modeling
languages and the subsequent implementation of process
models in executable software. Among the many languages
for process modeling that are available today (examples
are discussed in [2]), the Business Model and Notation
(BPMN) [3] has emerged as a widely accepted candidate.
Its importance and potential for consolidating the market of
process standards is emphasized by its recent acceptance as
an ISO standard [4]1.

With the publication of BPMN 2.0 in January 2011, support
for the native execution of BPMN process models and a
standardized serialization format has been added to the
standard. The intention underlying this addition is to mitigate
the gap between modeled processes on the one hand and
the execution of processes on the other hand [5]. When

1For the remainder of the paper, we will refer to the ISO version of the
standard [4], instead of [3].

bridging this gap by translating a model into executable
software, a variety of problems arise that are the topic of
various publications, e.g., [6]–[9], regardless of the concrete
modeling language used. Especially for industry-size process
models, this translation step is non-trivial and can lead to a
deviation of the actual implementation of the model from
the desired execution semantics captured in the model. The
direct execution of a process model intends to minimize the
distance between desired and actual behavior. This avoids
the necessity for a translation step in the first place and has
the potential to preempt the deviation of a model from its
implementation.

The specification of the execution semantics of a pro-
cess model in a standards document, as achieved with
BPMN 2.0 [4], is a first step towards the goal of direct
execution. As a next step, it is necessary that the execution
semantics are correctly and completely implemented by
vendors of the standard. In the case of BPMN, the second
step faces two major obstacles: Firstly, the implementation
of the specified execution semantics needs to be feasible,
which unfortunately cannot be guaranteed by the purely
theoretical and informal discussion of the execution semantics
in the BPMN 2.0 standard [10]. Secondly, the vendors
need to actually implement the same semantics and not
interpretations or customizations thereof. Since there is no
certification authority for BPMN, any vendor can claim full
implementation conformance and support for the standard
without proof of this claim. Furthermore, it may well be
possible that only a subset of BPMN is valuable from a
practitioner’s point of view, as indicated in [11]. As a result,
vendors might want to implement only a limited part of the
standard. The paper intents to cast light on the latter issue.

In prior work [12], we analyzed three well-known
BPMN 2.0 engines and investigated the degree of standard
conformance they provide. In this paper, we build upon this
work with a comprehensive study of BPMN 2.0 implementers
in the current market. We analyze the products of a broad list
of vendors that claim to implement BPMN 2.0. This shows
that a vast majority of current self-acclaimed BPMN 2.0
implementations is limited to visualization and does not
actually implement the execution semantics of BPMN 2.0.
Thereafter, we extend the standard conformance analysis
from [12] with a more sophisticated set of tests, covering a



higher degree of the executable part of the standard. Moreover,
we also analyze whether common feature combinations,
defined by the so-called workflow patterns [13], are supported.
We compare multiple revisions of several engines that
support the native execution of BPMN 2.0 over a three-
year period. This lets us see how BPMN 2.0 support has
evolved since its adoption as an ISO standard. The current
development indicates that the implementation of BPMN 2.0
is consolidating at a level that excludes a large part of the
actual execution semantics of the standard.

The remainder of this paper is structured as follows: The
next section outlines related work on BPMN 2.0 execution
and the evaluation and benchmarking of process engines. In
Section III, we present and discuss data of 45 vendors that
claim to implement the BPMN 2.0 standard. Thereafter, in
Section IV, we detail our procedure for evaluating standard
support in a BPMN engine and show the results of a detailed
assessment of the supported feature set of three products. The
results of our longitudinal study, showing the evolution of
feature support over the course of the last three years, round
off our findings in Section V. Finally, Section VI summarizes
the main findings of the study and points to future work.

II. RELATED WORK

Work related to this paper separates in three major areas:
First, we discuss work that concerns the native serialization
format and execution of BPMN 2.0 process models and
problems experienced during this task. Second, we outline
approaches for evaluating and benchmarking BPMN 2.0 en-
gines. Third, we present approaches for building reproducible
benchmarks, which is what we aim for in this paper.

A. Serialization Fromat and Native Execution of BPMN 2.0

The set of features that is to be supported by a BPMN 2.0
implementation is vast and so is the description of their
execution semantics. As discussed in [10], this description
is inaccurate and unambiguous in various places. As a
result, the goal of fully standard-conformant BPMN 2.0
implementations with identical behavior is elusive, according
to [10]. The same aspect is confirmed by [14], whose
authors discuss underspecifications for a particular language
construct, the service task, which are likely to result in
differing behavior in different implementations. Also [15]
targets this aspect and provides a comprehensive discussion of
the execution semantics of BPMN 2.0 [4] and their shortfalls.
To improve the situation, [15] refines the specification using
abstract state machines. Finally, also [16] discusses issues in
the specification of the serialization format of BPMN and
provides a preliminary analysis of the BPMN support in
modeling tools.

When it comes to the usage of the BPMN 2.0 execution
semantics and the serialization format, [5] presents first
results based on a survey. Already at the time shortly after
the publication of BPMN 2.0, 40% of the survey respondents

claimed to use the new native serialization format. It can be
expected that this number has increased since the publication
of [5].

B. Evaluating and Benchmarking BPMN 2.0 Engines

When it comes to the evaluation of BPMN 2.0 process
engines, our prior work on standard conformance [12]
is obviously related. Since we build on this approach, it
is described in more detail in the following sections. A
short case study that analyses several capabilities of a set
of BPMN 2.0 engines is presented in [17]. At the time,
practically none of the engines under focus was able to
correctly import models in the native BPMN serialization
format. This is an interesting result which is confirmed by our
analysis of BPMN implementers in Sect. III. It contradicts
the already mentioned results from [5]. There seems to
be a discrepancy between modeling tools which are able
to create and consume standard compliant BPMN models
and execution engines which are unable to work with those
models.

Apart from the evaluation of standard conformance, also
other aspects of BPMN 2.0 engines are investigated. A no-
table approach for evaluating the performance characteristics
of BPMN engines is [18]. Another comparative study is [19]
which evaluates the three BPMN engines activiti, jBPM
and camunda BPM with regard to their general architecture
and their extensibility. However, the focus in [19] is on
the integration of semantic techniques such as ontologies to
improve the quality of the processes to be executed.

C. Computational Reproducibility

Reproducible research, especially computational repro-
ducibility, is key in today’s science [20]. Many scientific
results are obtained with the help of extensive software
tooling, without which it is not possible to reproduce or
to check the correctness of results. To enable computational
reproducibility, [20] suggests to make the documented, tested,
and modular code on which scientific computations are
based, as well as all related material and the results freely
available, preferably on a version-control system. But even
following these guidelines, researchers trying to reproduce
the experiment still phase “significant barriers” [21, p. 72],
e.g., imprecise documentation which is hard to follow or
steep learning curves for the tools used in experiments.

To increase the reproducibility of scientific computa-
tions, [21], [22] suggest to use Docker2 as the basis for
computational environments, since it lowers several of the
aforementioned barriers. In Docker, one can create light-
weight Linux containers based on Docker images. These
images can be shared, reused, archived, put under version
control, and deployed on different platforms [21]. What is
more, such an image can be built automatically by passing a

2See https://www.docker.io for details.



Dockerfile (i.e., a list of commands) to Docker itself, making
the step to create the software environment for an experiment
reproducible for third parties. Here, we perform a benchmark
for obtaining core results. To enable reproducibility of this
benchmark, it is executed based on Docker.

III. ANALYSIS OF BPMN 2.0 IMPLEMENTERS

To gather insights on the state of BPMN implementation,
it is necessary to investigate the current market of systems
that implement the standard. To this end, we evaluate public
listings of BPMN implementers and judge their state of
implementation when it comes to the execution of BPMN 2.0
processes in this section. Only a small subset of the existing
implementations is mature enough to justify an evaluation
of the degree of standard conformance they exhibit. This
section describes the selection of such mature engines from
the actual market. Sect. IV analyses the degree of standard
conformance of the selected engines.

At a first glance, the market of BPM suites and engines
supporting BPMN seems to be rather active. A list of
BPMN implementers3 contains 75 implementations at the
time of writing. These implementers can be divided into
diagramming tools, Business Process Management Systems
(BPMS), Business Process Analysis (BPA) systems, and
Case Management systems. With regard to BPMN execution
semantics conformance, especially the fully fledged BPMS
suites are of relevance. We identified 31 candidates which
stated directly or implicitly that they also target the execution
of BPMN processes. Another “list of active BPMN 2.0
Engines” at Wikipedia4, which has been created and is mainly
maintained by members of the BenchFlow project5, currently
lists 24 entries. Here, we compared and consolidated both
lists, arriving at 45 BPM suites and engines, which claim
to conform to the BPMN standard. These systems are the
focus of the following sections.

A. Requirements for BPMN Engines

The standard document [4] is rather strict regarding Process
Execution Conformance: “The tool claiming BPMN Execu-
tion Conformance type MUST fully support and interpret
the operational semantics and Activity life-cycle specified in
sub clause 14.2.2. [...] Conformant implementations MUST
fully support and interpret the underlying metamodel.” [4,
p. 10] Following these statements, there are two main
aspects relevant for BPMN engines and BPMS: Firstly,
all language constructs defined in the BPMN meta-model
must be supported. Secondly, for each language construct
the underlying execution semantics must be implemented

3Available at http://www.bpmn.org/#tabs-implementers, the official BPMN
website.

4The list is available at https://en.wikipedia.org/wiki/List of BPMN 2.
0 engines.

5The project web site is available at http://www.iaas.uni-stuttgart.de/
forschung/projects/benchflow.php.

correctly. The only exceptions from this are a few “non-
operational elements” defined in [4].

The purpose of the standardization of BPMN is to achieve
portability and interoperability between different modeling
tools and engines. A common workflow for implementing
processes is to first model “basic” business process models
in a BPMN modeling tool. Subsequently, these models are
enriched with execution details specific to the BPMS used for
execution. A strong indicator for the importance of this use
case is the ongoing effort put into interchange of models by
various vendors of modeling tools and engines in the BPMN
Model Interchange Working Group (MIWG)6. Therefore, we
require BPMN engines and BPMS to support the import of
the standardized XSD-based serialization format as a third
important requirement.

To summarize these requirements, a conforming BPMN
implementation must:

1) support the usage of all constructs defined in the
standard,

2) implement the behavior of the constructs as specified,
and

3) be able to consume the standardized serialization format.
Only products that fulfill these requirements can be evaluated
to support process execution conformance, as defined in the
standard.

B. Requirements Evaluation for BPMS

We evaluated the requirements stated in the previous
section for all 45 BPMN implementations mentioned be-
fore using a structured methodology. First, we checked
the publicly available information on the websites of the
different vendors. If a version of the BPMN implementation
was available for free usage or evaluation purposes, we
downloaded this version. For each available product, we
checked whether existing integrated modeling tools support
the BPMN meta-model at least partially, i.e., whether at
least some BPMN elements with their defined attributes are
available. If this was the case, or if direct deployment of
BPMN files was possible, we tried to import and deploy an
existing BPMN process model. Only products that pass all
these tests can, in principle, be classified as an implementation
of the execution semantics of BPMN.

The results for the 45 tested products, depicted in Fig 1, are
rather surprising: For 25 out of the 45 products, evaluation
was not possible for various reasons. The development and
distribution of five products has been discontinued. For ten
products no suitable public information is available (too
little information to meaningfully evaluate BPMN support,
or information is not available in English). Two products
offer some modeling and execution functionality but neither
the shapes used nor the used serialization format correspond

6The work of the group, their intentions and preliminary results are
presented at http://www.omgwiki.org/bpmn-miwg/doku.php



to the BPMN standard. Hence, it is unclear, why these tools
are listed as BPMN implementers to begin with. For eight
products, a closer analysis is not possible in the context of
this paper, due to licensing restrictions. For instance, some
vendors explicitly prohibit the benchmarking and evaluation
of their products, which forces us to omit them from a closer
investigation.

evaluation not 
possible

(25 products, 
55%)

actually used 
(3 products, 7%)

no automation 
possible 

(3 products, 7%)

insufficient 
BPMN support 

(3 products, 7%)only BPMN 
modeling 

(11 products, 
24%)

Figure 1. Results of the Product Analysis

The usage of graphical BPMN shapes to model processes
is supported by eleven BPMS, but the definition of attributes
does not conform to the standard and/or the import, and as
a result, usage of standard compliant models is not possible.
Therefore, of the original 45 products, only 9 support at least
parts of the BPMN 2.0 meta-model, can import standard
compliant models and provide enough information for a
detailed assessment. Of those remaining BPMS, three engines
require the usage of extensions that are not covered by the
standard, or restrict the usage of essential features such as
IDs and task types. As a result, the models consumed or
produced by these systems are substantially different from
the BPMN 2.0 standard, although they share some syntactical
elements.

Considering all these aspects, only six systems justify a
closer analysis regarding the degree to which they actually
implement the BPMN standard. The remaining products are
able to digest process models conforming to the BPMN
standard, but for three of these, model import, deployment or
the process execution is only possible via manual operations
using a graphical interface.

This severely hampers computational reproducibility and,
thus, is prohibitive for our approach of checking the con-
formance, which will be described comprehensively in the
following section: We assess the conformance of the whole
spectrum of BPMN. To achieve this, each BPMN language
construct has to be tested in each possible configuration.
Furthermore, we want to guarantee isolation of tests by
providing a fresh process engine instance for each test
run, and by running each test various times to check
reproducibility of results. Those aspects are only feasible if
automated deployment and execution is possible. Therefore,
only three engines can be assessed here: These engines are

activiti, camunda BPM, and jBPM7.

IV. ASSESSMENT OF CURRENT BPMN SUPPORT

In this section, we benchmark the BPMN support of the
three engines selected in the previous section. We use the
newest version that was available on 2015-10-30, namely,
activiti 5.18.0, jBPM 6.3.0, and camunda BPM 7.3.0, thereby
updating the versions assessed in [12]. The setup of the
benchmark is explained in Section IV-A, followed by the
test suite, which consists of both, tests for native BPMN
support and tests for workflow control-flow pattern support,
in Section IV-B. The results of our assessment are given in
Section IV-C.

A. Benchmark Setup

The benchmark is conducted with an improved version of
the BPEL/BPMN Engine Test System (betsy). In previous
work, betsy has been used to benchmark BPEL [23] as
well as BPMN engines [12]. For this study, we have
improved and extended betsy by 1) adding the ability to
test several versions of activiti, jBPM, and camunda BPM,
2) enabling betsy to distinguish real concurrency and pseudo-
parallelism during process execution, 3) adding a test suite for
evaluating workflow control-flow pattern support in BPMN,
and 4) porting betsy to Linux to enable execution with
Docker.

Betsy has its own domain specific test language to
express conformance tests and their results [12], [23].
A test corresponds to an executable process that uses a
specific BPMN 2.0 language feature, e.g., a ScriptTask or
an ExclusiveGateway. Each test has at least one test case,
consisting of one or more test steps. These steps define
inputs to the test, in the form of string or integer variables.
Test inputs are injected into the process during execution as
properties. Moreover, test steps define expected test outputs
in form of test assertions. An assertion specifies execution
traces of a process model and is used to verify the correctness
of a test after its execution. Execution traces are written
during execution by the means of BPMN 2.0 ScriptTasks. By
comparing the expected execution trace with the actual one,
it is possible to determine whether a test case was executed
successfully. The testing of real concurrency within a process
has been implemented by adding the ability to store labeled
timestamps into the log trace. By checking if time stamps
overlap, it is possible to detect concurrent execution.

The test results state for each test case, a) if the respective
process could be deployed on a particular engine, and b) if
the test case was executed successfully. A language feature
is considered to be supported by an engine given the process
can be deployed and all test cases are executed successfully.

On starting a benchmark, betsy executes a test workflow
for each test and each engine under test. First, the native

7Further information is available at the respective homepages located at
http://www.activiti.org/, http://www.camunda.org/, and http://www.jbpm.org/.



BPMN format of a test is adapted to the engine under test.
For instance, a concrete scripting language needs to be set
(this aspect is not treated by the BPMN standard). To ensure
that each test is executed in isolation, a fresh instance of the
engine under test is installed and started. Next, the process
containing the language feature under test is deployed on the
running engine. The deployment may require the creation of
a deployment package, depending on the engine under test.
Next, the test itself is executed by triggering all test cases
with their test steps subsequently. Following this, execution
traces are gathered from the log file and compared to the
expected traces, thereby determining test success or failure.
Last, the engine under test is shut down.

We used the following steps to ensure that the benchmark
conducted as part of this work can be considered reproducible:
Betsy itself including its test suites is open source and freely
available on a version control system8. This holds true for
the engines under test as well. In addition, the functional
correctness and quality of betsy is ensured using a continuous
integration pipeline. The results of our experiments can be
found in version control as well9. The benchmark is done
within a fixed Docker-based environment10 for betsy, which
required the porting of betsy to Linux. The pre-built image
on which the experiment was conducted is also available11.

B. Test Suites for BPMN Conformance Assessment

There are two test suites for assessing the conformance of
engines to the BPMN standard: The first test suite bundles
tests for the constructs and features described in the BPMN
specification [4]. The second focuses on more complex
constructs that are frequently needed in process models,
captured in the form of workflow control-flow patterns [13].

1) Feature Tests for Language Constructs: The first
test suite has already been used in [12] and covered 27
different language constructs (such as ExclusiveGateway)
which have been tested by 70 feature tests divided in
five different groups. Using feature tests we are able to
determine whether all possible configuration possibilities (e.g,
usage of a default SequenceFlow for ExclusiveGateways) are
supported by the engines under test. Although the 27 language
constructs represent the majority of the BPMN constructs,
we added further constructs to tackle several limitations
mentioned in [12]: First, we added a sixth construct group,
data, which contains basic tests for the language constructs
DataObject and Property. Second, we added further tests
for inter-process communication performed with the help
of Signals, MessageEvents, SendTasks and ReceiveTasks.

8The project page is located at https://github.com/uniba-dsg/betsy.
9The complete results are available at https://github.com/uniba-dsg/

2016sose-results
10The Dockerfile is available at https://github.com/uniba-dsg/betsy-docker
11To use the pre-built image, please execute the command docker

pull simonharrer/betsy-docker on the command line. More
information is available on the Docker Hub project at https://hub.docker.
com/r/simonharrer/betsy-docker/

Moreover, we now also test MultipleEvents, the usage
of EventDefintionRefs, AdHocSubProcesses and different
startQuantity and completionQuantity settings of activities
(subsumed as TokenCardinality). Apart from those newly
added language constructs we refined and added feature
tests for various other language constructs. The resulting test
suite for checking the native BPMN support consists of 38
language constructs tested by 113 feature tests. This is a
40% increase in the amount of language constructs covered.
An overview over all covered constructs and the number
of associated feature tests is shown as part of the results
in Table I.

2) Workflow Control-flow Patterns: Standard conformance
of all language features is necessary to execute arbitrary
standard-conformant processes on a given engine. Any
process that can be expressed in the standard, should be
executable on an engine. Closely related to this aspect is
the expressive power of the language dialect supported by
an engine. Expressive power is captured by the ease with
which structures that are frequently needed in a system can
be expressed. The easier commonly needed structures can
be built, the more expressive a language or system is. In the
case of process languages, expressive power is frequently
assessed by the means of workflow patterns [13]. Although
the relevance of the concrete patterns is not undisputed [10],
they are frequently applied in related studies. Additionally,
using workflow patterns for assessing expressive power eases
the comparison of this work to others.

In this paper, we use the original 20 workflow control-
flow patterns from [13], and no extensions or derivations
thereof, since these are most widely known. We built upon
the pattern-based analysis for BPMN 1.0 presented in [24].
Most of the pattern implementations described in the paper
can directly be applied to BPMN 2.0. In the rare cases, where
a modification of a pattern implementation was necessary, we
followed the rationale of [24] to provide a solution. Table II
lists the patterns sorted by pattern category, along with the
highest degree of pattern support that can be achieved for
BPMN 2.0. Due to page constraints, we cannot describe
every pattern here, but refer the interested reader to [13],
[24]. Pattern support is rated in a trivalent rating of + (direct
support), +/−, (partial support), or − (no direct support).
Again, we follow [24] in the judgement of the degree of
support that is possible in BPMN. It can be seen in Table II
that two patterns (MI without A Priori Run-Time Knowledge
and Milestone) cannot be directly implemented in BPMN.
We were unable to find workarounds based on the extended
vocabulary of BPMN 2.0 that could compensate for this.
Thus, we exclude these patterns from further discussion.
For the remaining patterns, we implemented at least one test
case, according to the structures from [24], that led to pattern
support. In case at least one engine failed the initially built
test, we implemented an additional test that led to the same
or a reduced support rating, to see if the engine supports an



alternate structure. The reasoning for this is that an engine
is considered to support a pattern if it implements at least
one solution that grants support. Full support of all possible,
equivalent solutions is not required. Finally, if an engine
supports none of the solutions presented by [24] (fails all
related tests), we consider it as not supporting a pattern.

C. Benchmark Results

The results are obtained by executing the benchmark setup,
described in Section IV-A, for the three engines, selected in
Section III, using the test suites from the previous section. The
next section discusses the results for the test suite addressing
native BPMN support, followed by the discussion of workflow
control-flow pattern support.

1) Feature Tests for Language Constructs: The results of
the evaluation of native BPMN support are shown in Table I.
Activiti supports 51 out of the 113 features, camunda BPM
supports 55, and jBPM provides the highest amount of
support with 59 features. Translated to percentage values,
support ranges from 45% up to 52%, being approx. half
of the tested features. It is interesting that all three engines
support roughly the same amount of features, differing by
at most eight features. In comparison to previous work [12],
we added 43 new feature tests, but the support of activiti has
only risen by 12 features, of camunda BPM by 11 features,
and of jBPM by 15 features. Hence, the data reveals that at
most 35% of the added feature tests are supported.

Activiti and camunda BPM differ in their support of four
features. Previously [12], camunda BPM supported all the
features activiti that supported, but this is no longer the case.
Activiti successfully detects two errors related to Multiple-
Events, which are missed by camunda BPM at deployment
time. However, taking all other differences into account,
camunda BPM is better than activiti. Camunda BPM has
higher support for Compensation-, Signal- and TimerEvents,
as well as for detecting invalid loop conditions. The third
engine, jBPM, shows strength with its support for twelve
additional event types compared to camunda BPM, but fails
to support conditional SequenceFlows and the MultiInstance-
Task. Apart from these differences, jBPM behaves similar to
the other two engines.

Looking at the supported language constructs by group, we
can see that the data group is supported completely. Within
the gateways group, all three engines support EventBased-,
Exclusive-, Inclusive-, and MixedGateway combinations.
However, all fail to support ComplexGateways. Parallel-
Gateways are only partially supported, since none of the
engines actually supports concurrency, but only pseudo-
parallelism. The language constructs of the basics group,
namely, Lanes, Participants and SequenceFlows are supported
by every engine. Conditional SequenceFlows are supported
partially by activiti and camunda BPM, whereas jBPM
has no support for this construct. Regarding the activities
group, three features, namely, ReceiveTask, SendTask and

AdHocSubProcess, are unsupported. Nevertheless, every
engine supports SubProcesses and Transactions. Regarding
the LoopTask, only one out of six different tests is supported
by every engine. In contrast, support for MultiInstanceTasks
is relatively good, with five out of eight successful tests by
activiti and camunda BPM, but it is completely unsupported
by jBPM. The usage of tokens is barely supported as only
activiti and camunda BPM pass one out of four tests. In
previous work, all feature tests within the errors group were
supported. As opposed to this, most of the newly added
error tests fail, except for two checks for the usage of
multiple events and invalid loop conditions by activiti and
jBPM. Within the events group, MessageEvents, Conditional-
Events, and EventDefinitionRefs are unsupported by every
engine, whereas widespread support can be diagnosed for
Error- and TerminateEvents. The engine jBPM supports all
EscalationEvents, which are unsupported by the other two
engines. Furthermore, it supports all SignalEvents, which
are supported with five and six successful tests out of nine
by activiti and camunda BPM, respectively. Approximately
half of the tests for TimerEvents and CompensationEvents
are passed by the engines. Failures of the TimerEvents in
jBPM and activiti are mainly caused by using timers for start
events. Cancel- and LinkEvents are unsupported by jBPM
and activiti, respectively, but supported by the camunda BPM.
Half of the tests for MultipleEvents are passed by jBPM only.

Looking at the number of language features that were
not supported, we can distinguish between two different
cases: rejection at deployment and failure at runtime. Activiti
rejects 21, camunda BPM 24, and jBPM 23 valid language
features at deployment. Of the unsupported language features,
activiti accepts 41, camunda BPM 34, and jBPM 31 language
features at deployment, but at runtime the corresponding tests
reveal wrong execution semantics. This is a real issue for
users of the engines as they might encounter unexpected
behavior in their own deployed processes, which is even
worse in case it remains undetected.

2) Workflow Control-flow Patterns: The support of work-
flow control-flow patterns is shown in Table II. Overall, every
engine supports at least 13 out of the 20 original workflow
patterns. However, as mentioned before, the patterns WCP-
15 and WCP-18 are excluded from the analysis, since they
cannot be directly supported in BPMN to begin with. Eleven
patterns are supported as expected by all three engines. The
three patterns WCP-9, WCP-12 and WCP-17, for which
partial support is possible in BPMN, are unsupported by all
engines under test. For four patterns the results vary from
engine to engine, but are always supported by two engines.
WCP-13, WCP-14 and WCP-19 are directly supported by
activiti and camunda BPM, but not supported by jBPM. This
reveals a major problem with the jBPM engine. The pattern
WCP-10 is correctly executed on jBPM and activiti, but not
on camunda BPM. This is also the only difference of the
pattern support between camunda BPM and activiti.



Table I
NATIVE BPMN SUPPORT

group language construct fe
at

ur
es

ac
tiv

iti

ca
m

un
da

B
PM

jB
PM

Σ 38 113 51 55 59
gateways 6 14 12 12 11

ComplexGateway 1 0 0 0
EventBasedGateway 2 2 2 2
ExclusiveGateway 3 3 3 2
InclusiveGateway 2 2 2 2
MixedGatewayCombinations 4 4 4 4
ParallelGateway 2 1 1 1

basics 4 6 5 5 3
Lanes 1 1 1 1
Participant 1 1 1 1
SequenceFlow 1 1 1 1
SequenceFlowConditional 3 2 2 0

data 2 2 2 2 2
DataObject 1 1 1 1
Property 1 1 1 1

activities 9 27 10 10 4
AdHocSubProcess 2 0 0 0
CallActivity 2 1 1 1
LoopTask 6 1 1 1
MultiInstanceTask 8 5 5 0
ReceiveTask 2 0 0 0
SendTask 1 0 0 0
SubProcess 1 1 1 1
TokenCardinality 4 1 1 0
Transaction 1 1 1 1

errors 5 10 5 4 5
InvalidGatewayCombinations 2 2 2 2
InvalidLoopConditions 2 0 1 0
InvalidTokenQuantity 3 0 0 0
MultipleEvents 2 2 0 2
ParallelGatewayConditions 1 1 1 1

events 12 54 17 22 34
CancelEvent 1 1 1 0
CompensationEvent 6 2 3 5
ConditionalEvent 5 0 0 0
ErrorEvent 4 4 4 4
EscalationEvent 7 0 0 7
EventDefinitionRef 4 0 0 0
LinkEvent 1 0 1 1
MessageEvent 3 0 0 0
MultipleEvents 4 0 0 2
SignalEvent 9 5 6 9
TerminateEvent 1 1 1 1
TimerEvent 9 4 6 5

Looking at the pattern groups, it is obvious that all
basic control-flow patterns are supported. Both, structural
and cancellation patterns, are also supported on almost
each engine, except for one failure in each of the groups.
Within the group of advanced branching and synchronization
patterns, only one pattern is completely unsupported, but the
remaining three are directly supported by every engine. The
same holds true for the state-based patterns. The remaining
group of multiple instances patterns is least supported, as
WCP-12 is completely unsupported by all engines and both
WCP-13 and WCP-14 are unsupported by jBPM. When
looking at the reasons for failures in pattern support, the
most common issue is that the BPMN process containing the
pattern is not deployable, because a construct used therein
(such as an AdHocSubProcess) is not supported by an engine.

Table II
WORKFLOW CONTROL-FLOW PATTERN SUPPORT

Control-Flow Pattern B
PM

N
2.

0

ac
tiv

iti

ca
m

un
da

B
PM

jB
PM

Basic Control-Flow Patterns
WCP-1 Sequence + + + +
WCP-2 Parallel Split + + + +
WCP-3 Synchronization + + + +
WCP-4 Exclusive Choice + + + +
WCP-5 Simple Merge + + + +

Advanced Branching and Synchronization Patterns
WCP-6 Multi-Choice + + + +
WCP-7 Structured Synchronizing Merge +/- +/- +/- +/-
WCP-8 Multi Merge + + + +
WCP-9 Structured Discriminator +/- - - -

Structural Patterns
WCP-10 Arbitrary Cycles + + - +
WCP-11 Implicit Termination + + + +

Multiple Instances (MI) Patterns
WCP-12 MI Without Synchronization + - - -
WCP-13 MI With A Priori Design-Time Know. + + + -
WCP-14 MI With A Priori Run-Time Know. + + + -
WCP-15 MI Without A Priori Run-Time Know. - - - -

State-Based Patterns
WCP-16 Deferred Choice + + + +
WCP-17 Interleaved Parallel Routing +/- - - -
WCP-18 Milestone - - - -

Cancellation Patterns
WCP-19 Cancel Activity + + + -
WCP-20 Cancel Case + + + +

Because of this, jBPM supports none of the multiple instances
patterns due to missing support for the MultiInstanceTask
and the WCP-19 Cancel Activity due to missing support
for the CancelEvent. The pattern WCP-10 Arbitrary Cycles
should in general be supported by camunda BPM as all
used language features are supported, but the test fails with
a runtime exception caused by the composition of these
language features.

To sum up, pattern support of the three engines can be
considered high and balanced, as it is ranging between 13 up
to 15 out of 18 patterns. It is interesting that activiti supports
14 out of the 18 patterns with only 51 out of 113 language
features. In contrast, the engine jBPM supports 59 out of the
113 language features, but only supports 13 patterns. Hence,
only a moderate degree of support for language features is
required to implement a large set of the patterns.

What is more, the lack of pattern support by jBPM is
mainly caused by rejecting processes containing the pattern
already at deployment time. Out of the ten failed tests, nine
pattern tests were being rejected during deployment. For
activiti and jBPM, only one out of six and three out of seven
are rejected upon deployment.

V. EVOLUTION OF BPMN SUPPORT

As seen in the previous section, there are substantial
limitations in the current implementation of the BPMN
standard. These limitations could be attributed to the fact
that implementation is still in progress and support of the



standard will increase with time. An alternative interpretation
is that implementations are limited to the features of the
standard that are relevant in practice and the remaining
part of the standard will likely never be implemented. The
latter interpretation is supported by studies that show that
the features used in process models by practitioners are
limited to a modest part of the standard [11], [25]. Here,
we try to address this aspect from the direction of process
engines. If, on the one hand, the feature set supported by
engines constantly increases, this is an indication that the
implementation of the standard is still in progress. On the
other hand, if the feature set supported by engines stays
rather constant over time, this is an indication that the
implementation of the standard has stopped in practice and
language features that have not been supported by now are
considered as irrelevant.

To address this aspect, we investigate the evolution of
BPMN support over time in this section. We benchmark
different versions of the engines discussed in Section IV
that have been published over a three year period, using
the exact same methodology as before. An overview of the
engine versions we consider is given in Section V-A. The
results of the benchmarks, describing the evolution of native
BPMN support and workflow control-flow pattern support,
are shown in Section V-B and Section V-C, respectively,
and are summed up in Section V-D. The results support the
second hypothesis, i.e., that the implementation of the BPMN
standard is concluded in practice.

A. Compared Engine Versions

Section IV details the benchmarks of the latest versions
of the engines activiti, jBPM, and camunda BPM. Here,
we add benchmarks for three additional prior versions of
each said engine. The concrete version numbers of the
engines are shown in Table III, along with their release
date and the number of days each version has served as
latest stable release. The engine vendors apply semantic
versioning for setting release numbers12. Version numbers are
encoded in the form MAJOR.MINOR.PATCH and numbers
are incremented depending on the nature of the changes
made in a revision. According to semantic versioning, an
increment of the patch level should only reflect bug fixes,
the minor level is incremented when adding functionality
which is backwards compatible, and the major version is only
changed when introducing API-breaking changes. Within the
last three years, several minor or patch level updates have
been released for all engines, but no major release has been
made. Here, we focus on the last four minor version updates
and always use the highest available patch level13. Each of the

12See http://semver.org/ for details.
13The only exception to this rule is activiti 5.16.4 which contained a bug

that severely hampered process deployment. Since the fix for this bug has
not been backported to activiti 5.16.X, we used the previous patch level,
namely, activiti 5.16.3.

releases are at least three month and on average six months
apart. Therefore, we can expect to see signs of progress in
BPMN feature implementation, given the implementation
has not been concluded yet.

Table III
THE BPMN ENGINES UNDER TEST

Version Release Date Newest Version for # Days

activiti
5.18.0 2015-07-31 >92
5.17.0 2014-12-18 225
5.16.3 2014-09-17 92
5.15.1 2014-04-01 169
jBPM
6.3.0 2015-09-28 >33
6.2.0 2015-03-09 203
6.1.0 2014-08-19 202
6.0.1 2014-05-14 97
camunda BPM
7.3.0 2015-05-29 >155
7.2.0 2014-11-28 182
7.1.0 2014-03-31 242
7.0.0 2013-08-31 212

Each engine has a different release strategy, as can be
seen in the release dates and the number of days between
each release in Table III. Whereas activiti has a relatively
short release cycle, both jBPM and camunda have longer
release cycles. As we only use the last four minor version
releases, we do not cover the same amount of time for each
engine. This is not a problem, since we are interested in
increasing feature support between releases, and not within
a fixed period of time.

B. Evolution of Native BPMN Support

Since page space is limited, we cannot present the
complete benchmark results for all engine versions. Instead,
an overview of the changes in native BPMN support is
shown in Table IV. Feature regressions, i.e., features that
were supported in the earliest version, stopped working
in an intermediate version, and resumed functioning in a
subsequent version, are excluded from this overview.

Table IV
EVOLUTION OF NATIVE BPMN SUPPORT

Feature Change Engine

4 events supported since camunda BPM 7.1.0
2 events supported since camunda BPM 7.3.0

1 gateway and 4 events supported since jBPM 6.1.0

First of all, it becomes obvious that there is very little
change in the support of BPMN features. Feature support for
all three engines increased by the number of merely eleven
additional features during the past three years. Especially
when considering the immense number of potential features
and the moderate degree to which engines implement the
standard so far, as described in Section IV, this number is
very low.



Regarding activiti, we do not see any evolution of native
BPMN support. In the groups of activities, basics, data, and
errors, we cannot diagnose any changes at all. There are
minor improvements in the gateways and events group, but
the changes are minimal. For instance, one test shifts from
being undeployable to a partial support of some variants of
a language feature, which does not justify to be judged as
an increase in feature support. The only factual change that
does happen is a regression in activiti 5.16.3 which is fixed
in activiti 5.17.0 for a single event type.

In contrast to activiti, there are more differences between
the tested versions of camunda BPM. However, the support
for the basics, data, errors, and gateway groups stays the
same for all versions. With the change from camunda BPM
7.0.0 to 7.1.0, four new features within the events group are
supported and with the latest version 7.3.0, camunda BPM
gains support for two additional features in the events group.
A negligible change, similar to the changes for activiti, can
be found in the activities group, between camunda BPM
7.0.0 and 7.1.0. Overall, six new BPMN events are supported
in the latest version in contrast to the earliest version we
have tested.

Looking at jBPM, we can see that all the versions have
the same support for activities, basics, data, and the errors
group. Upgrading jBPM 6.0.1 to 6.1.0 brought support for
five new features, namely four new events and one gateway.
Upgrading from jBPM 6.1.0 to 6.2.0, however, results in
five regression errors as again four events and one gateway
option fails. With jBPM 6.3.0, these failures are fixed again.
To sum up, over the time of the last four minor versions,
jBPM introduced five new features in total.

C. Evolution of Workflow Control-flow Patterns Support

An overview of the evolution of workflow control-flow
pattern support is shown in Table V. As it can be seen,
there are even fewer changes and these are not limited to
an increase in feature support, but instead also include a
decrease.

Table V
EVOLUTION OF PATTERN SUPPORT

Pattern Change Engine

WCP06 supported since jBPM 6.1.0
WCP10 supported until camunda BPM 7.1.0

For activiti, we have no visible improvements in pattern
support over the last four minor releases. This can be
expected, since there is also no increase in native language
features. The only change is that processes which contain
complex gateways are no longer marked as not deployable,
affecting the variants of WCP06 and WCP09 that make use of
complex gateways. This change happens between the versions
5.16.3 and 5.17.0. However, this has no effect on pattern
support, as said pattern variants do not work as expected

at runtime anyway. Regarding jBPM, we can see a single
improvement in the variant of WCP06 that is implemented
with an inclusive gateway. This is unsupported in jBPM
6.0.1 but supported in every subsequent version we have
tested. Looking at camunda BPM, the support for workflow
patterns even declines. While WCP10 is still supported in
both versions 7.0.0 and 7.1.0, versions 7.2.0 and 7.3.0 lack
support of this pattern.

D. Summary

Overall, it seems that the evolution of feature support in
BPMN engines has stopped. Improvements to feature support
are confined to BPMN events. as shown by increases for
camunda BPM and jBPM. Fig. 2 visualizes this development.
It can be seen that feature support is hardly rising. Interest-
ingly, activiti, which supports the least number of BPMN
events of the three engines, has not improved in that area
within the last four releases.

Figure 2. Evolution of Native BPMN Support for Events

This halt in feature improvements of these three major
BPMN engines can be seen as a sign that the implementation
of the BPMN standard has concluded at the current level. It
seems that neither the implementers of these engines view
the remaining features of the standard as valuable for their
implementations, nor are they pressured by their customer
base to implement further features. Otherwise, we would see
a stronger increase in new features. Since all three engines
are successful in the market, we can conclude that the feature
set they provide is sufficient for BPM-systems in practice.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a comprehensive analysis
of the current state and the evolution of the implementation
of the BPMN 2.0 standard. The results of this analysis
can be summarized as follows: Evidence suggests that the
implementation of the standard in practice has concluded at
the current level. Remaining features of the standard that are
not yet supported seem to be irrelevant in practice.

The first part of this study, presented in Section III, was a
comprehensive analysis of products that claim to implement
the BPMN 2.0 standard. Of the 45 products that classify as
BPMS or process engines, only three remain that are able



to consume the required serialization format and permit a
closer evaluation. In Section IV, we performed such a closer
evaluation of feature support provided by the most recent
versions of these engines. We analyzed conformance to the
BPMN standard and, on top of that, support for common
workflow control-flow patterns. Following this analysis, we
extended the study to three additional prior versions of the
engines that have been published over the last three years in
Section V. We could show that hardly any features have been
added over this time. Hence, we can conclude that neither
the implementers, nor the users of the standard are interested
in the remaining features of the standard.

Multiple directions of future work follow from this. Firstly,
it would be desirable to investigate further BPMN engines.
We hope to obtain access to further products, but this depends
on the availability of academic licenses. Secondly, we work
on extending the coverage of our test suite. Currently, this
test suite does not cover all aspects of the standard and a
higher level of coverage would be desirable. With respect to
the results presented in this paper, it can be expected that a
higher level of feature coverage leads to a diagnosis of even
more insufficiencies in contemporary implementations. The
refinement of the standard can be seen as a third direction.
Currently, the BPMN standard is quite extensive and studies
that analyse its usage in practice, such as this one, consistently
show that many of the features are simply not needed. A
reduction of the feature set of BPMN to a core subset could
help in many ways, e.g., by easing the implementation of the
standard and reducing the complexity for its users. Similar
approaches exist for related standards [26] and could be
valuable for BPMN as well.

ACKNOWLEDGMENTS

We would like to thank the students of the University of
Bamberg who contributed to the benchmarking system used
in this paper during software development projects. Thanks
go to Adrian Bazyli, Annalena Bentele, Christian Kremitzl,
Lea-Louisa Maaß, Frederik Müller and Severin Sobetzko.

REFERENCES

[1] W. M. P. van der Aalst, “Business Process Management: A
Comprehensive Survey,” ISRN Software Engineering, 2013.

[2] H. Mili, G. Tremblay, G. B. Jaoude, E. Lefebvre, L. Elabed,
and G. E. Boussaidi, “Business Process Modeling Languages:
Sorting Through the Alphabet Soup,” ACM CSUR, vol. 43,
no. 1, 2010.

[3] OMG, Business Process Model and Notation, 2011, v2.0.
[4] ISO/IEC, ISO/IEC 19510:2013 – Information technology

- Object Management Group Business Process Model and
Notation, November 2013, v2.0.2.

[5] M. Chinosi and A. Trombetta, “BPMN: An introduction to the
standard,” Comp. Stand. & Inter., vol. 34, no. 1, pp. 124–134,
2012.

[6] B. Hofreiter and C. Huemer, “A Model-driven Top-down
Approach to Inter-organizational Systems: From Global Chore-
ography Models to Executable BPEL,” in IEEE EEE, 2008.

[7] I. Weber, J. Haller, and J. Mulle, “Automated Derivation of
Executable Business Processes from Choreographies in Virtual
Organisations,” IJBPIM, vol. 3, pp. 85–95, 2008.

[8] C. Ouyang, M. Dumas, Wil M. P. van der Aalst, Arthur H.
M. ter Hofstede, and J. Mendling, “From Business Process
Models to Process-Oriented Software Systems,” ACM TOSEM,
vol. 19, no. 2, 2009.

[9] A. Schönberger, “The CHORCH B2Bi Approach: Performing
ebBP Choreographies as Distributed BPEL Orchestrations,” in
SC4B2B, 2010.

[10] E. Börger, “Approaches to modeling business processes: a
critical analysis of BPMN, workflow patterns and YAWL,”
Softw. & Systems Modeling, vol. 11, no. 3, pp. 305–318, 2012.

[11] M. zur Muehlen and J. Recker, “How Much Language is
Enough? Theoretical and Practical Use of the Business Process
Modeling Notation,” in CAiSE, 2008.

[12] M. Geiger, S. Harrer, J. Lenhard, M. Casar, A. Vorndran, and
G. Wirtz, “BPMN Conformance in Open Source Engines,” in
SOSE, San Francisco Bay, CA, USA, March/April 2015.

[13] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and
A. Barros, “Workflow Patterns,” Distributed and Parallel
Databases, vol. 14, no. 1, pp. 5–51, July 2003.

[14] C. Gutschier, R. Hoch, H. Kaindl, and R. Popp, “A Pitfall
with BPMN Execution,” in WEB, 2014, pp. 7–13.

[15] F. Kossak, C. Illibauer, V. Geist, J. Kubovy, C. Natschläger,
T. Ziebermayr, T. Kopetzky, B. Freudenthaler, and K.-D.
Schewe, A Rigorous Semantics for BPMN 2.0 Process Di-
agrams. Springer, 2014, ISBN: 978-3-319-09930-9.

[16] M. Geiger and G. Wirtz, “BPMN 2.0 Serialization - Standard
Compliance Issues and Evaluation of Modeling Tools,” in
EMISA, 2013.

[17] M. Dirndorfer, H. Fischer, and S. Sneed, “Case Study on the
Interoperability of Business Process Management Software,”
in S-BPM ONE, 2013.

[18] M. Skouradaki, D. H. Roller, F. Leymann, V. Ferme, and
C. Pautasso, “On the Road to Benchmarking BPMN 2.0
Workflow Engines,” in ACM/SPEC ICPE, 2015.

[19] K. Kluza, K. Kaczor, G. J. Nalepa, and M. Slazynski,
“Opportunities for Business Process semantization in open-
source process execution environments,” in FedCSIS. IEEE,
2015, pp. 1307–1314.

[20] Z. Merali, “Computational science: Error, why scientific
programming does not compute,” Nature, vol. 467, no. 7317,
pp. 775–777, 2010.

[21] C. Boettiger, “An introduction to Docker for reproducible
research,” ACM OSR, vol. 49, no. 1, pp. 71–79, 2015.

[22] R. Chamberlain and J. Schommer, “Using Docker to Support
Reproducible Research,” Invenshure, LLC, Tech. Rep., 2014.

[23] S. Harrer, J. Lenhard, and G. Wirtz, “BPEL Conformance in
Open Source Engines,” in SOCA. IEEE, 2012, pp. 237–244.

[24] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter
Hofstede, and N. Russell, “On the Suitability of BPMN for
Business Process Modelling,” in BPM, 2006, pp. 161–176.

[25] J. Lenhard, M. Geiger, and G. Wirtz, “On the Measurement
of Design-Time Adaptability for Process-Based Systems,” in
SOSE. IEEE, 2015.

[26] E. Højsgaard and T. Hallwyl, “Core BPEL: Syntactic Simplifi-
cation of WS-BPEL 2.0,” in ACM SAC, 2012, pp. 1984–1991.


