FIPARSE - A GENERIC PARSER FOR
FIPA-COMPLIANT AGENT
COMMUNICATION

Markus B. Sollner
Distributed and Mobile Systems Group
University of Bamberg
Feldkirchenstrafle 22
96052 Bamberg, Germany
email: markus.soellner@Qweb.de

Sven Kaffille and Guido Wirtz
Distributed and Mobile Systems Group
University of Bamberg
Feldkirchenstrafle 22
96052 Bamberg, Germany
email: sven.kaffille@wiai.uni-bamberg.de

ABSTRACT

Software Agents communicate by exchanging messages formulated in an
Agent Communication Language. In order to facilitate communication and
understanding of each other, the domain of discourse of heterogeneous agents
should be described in an explicit ontology. Both, the Agent Communication
Language and the ontology definition, are independent of the implementa-
tion of agents. Furthermore the content of messages should be formulated
in a standardized content language. So the content of messages and the rep-
resentations of ontologies have to be transformed into a format that can be
interpreted by an agent. Today many agents are implemented using Java
technology. This paper presents a generic parser called fiParse that en-
ables developers of Java-based agents to create representations of ontologies,
namely Java classes and standardised message content that can be inter-
preted by their agents and is compliant to the FIPA standards. This works

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

1 Introduction

with ontologies defined up-front as well as on-the-fly by adding ontologies
when agents are already up and running. Thus fiParse facilitates a seamless
standardized integration between ontology and agent development.

KEY WORDS
Software Agents, Agent Communication, Ontology, FIPA Content Languages,
Parser

1 Introduction

For working with software agents different standardisation approaches have
been made during the last years. One of those approaches is the specification
work of the FIPA concerning agent management and agent communication
(http://www.fipa.org/). These formal specifications (more precisely parts of
the specifications) have been realised as Java implemented agent platforms
like, e.g., FIPA-OS [1], JADE [2], and Grasshopper [3].

In the FIPA context, Communication between agents takes place by
means of exchanging messages based on the theory of speech acts [4]. These
messages are formulated in a so called Agent Communication Language
(ACL). One standardised and widely used Agent Communication Language
is FIPA-ACL [5]. The data contained in a FIPA-ACL message can be divided
into five categories: the communicative act [6], the participants in commu-
nication, control of conversation, content and description of content. The
content of an ACL message is formulated in a content language (CL) and
usually has to be interpreted regarding the interdependencies between the
expressions as defined in an ontology [5]. While each agent platform includes
a parser to convert ACL messages to fields and values in a Java object, the
platforms lack a parser to parse the content in different CLs depending on
different ontologies. So it is often necessary to implement a new, specific
parser for the CL and ontology used with each special agent system.

fiParse is meant to close this gap. It has been implemented in Java as
the most important agent platforms have also been implemented in Java. So
fiParse can be used as plug-in for agent systems implemented on Java-based
agent platforms. fiParse is able to read ontologies and to recognise the words
and objects used. In order to do so, the ontology is mapped to hierarchies
of Java classes and their properties. The data transferred as content of ACL
messages is then written to instances of those classes in order to enable the
agents to process them. fiParse has been designed to use ontology definitions
formulated in different ontology languages like, e.g., RDFS [7], DAML+OIL
[8], OWL [9] or FIPA Meta Ontology [10], in order to facilitate the usage of

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

2 Design and Implementation

generating classes parsing messadges durng runtime of
whila building an |::> generator parser agents: if needad, generating
anent system unknown classes durng runtime
java classes facts as triple
generated from | |representation of FIFASL
ontology message content
ontology in defipdion FIFARDF message in

ontology
representation
language

transfommation

message

& objects

content

FIF A KIF language

FIFA CCL

|message parser

''''' a
1

o Figure 1: Modular architecture of fiParse)
many existing and upcoming ontology definitions from many different ven-

dors. Hence, it is able to deal with the heterogenity of ontologies in a multi
agent environment.

The rest of this paper is structured as follows. The next section contains
a summary of the design criteria the system is finally based on as well as a
description of the architecture and the modules of the fiParse parser system
implemented in Java. A short tutorial, how to use fiParse in design and
usage of an agent system is given in section 3. An overview of related and
future work in sections 4 and 5 concludes this paper.

2 Design and Implementation

This section first discusses the requirements of generic parser for agent plat-
forms. Afterwards, a description of the overall architecture and the most
important modules that constitute fiParse in order to meet these require-
ments are presented.

The first group of requirements are deduced directly from the FIPA spec-
ifications for agent communication as well as the structure of ACL messages.
The basic functionality has to include:

e Reading of content and description parameters (CL, ontology) from
ACL messages, not restricted to the message format of one specific
platform implementation.

e Support for the three types of transported information in a FIPA ACL
message: objects, propositions and actions [11].

e Definition of the words and expressions used in an explicit ontology
known to all agents participating in conversations.

The second group of requirements is caused by the envisioned generics of
fiParse:

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

message in
cantent

language

2 Design and Implementation

e Creation of Java objects and properties according to an explicit ontol-
ogy written in an ontology representation language, as explicit ontolo-
gies ease distribution and sharing of domain knowledge.

e Ability to use different ontology representation languages with the
parser system (RDFS, DAML4OIL, OWL, FIPA Meta Ontology). This
requirement follows directly from the first one to facilitate the distribu-
tion and sharing of ontologies independent from agent implementations.

e Exact definition of configurable rules for transformation and mapping
of definitions from ontologies to classes, primitive data types, etc. to
facilitate the adaptation of fiParse to new ontology definition languages.

e Transformation of Java objects derived from an explicit ontology defini-
tion to message content using a string representation in different FIPA
compliant CLs, e.g. RDF or SL [12], to be able to send them in an im-
plementation independent format to other agents understanding FIPA
compliant CLs and the ontology used.

e Retransformation of ACL message content written in different CLs to
Java objects, derived from an explicit ontology definition. This enables
Java-based agents to interpret messages received from other FIPA com-
pliant agents.

Figure 1 presents the modular architecture of the fiParse parser system de-
rived from the requirements described above. The figure shows the two main
functions of fiParse. The modules on the left side (the class generator) are
used to create Java objects according to ontology definitions in different on-
tology representation languages. The modules on the right side (the message
parser) offer functions to transform and retransform message strings and
objects. The two darker shaded modules are independent from a specific on-
tology or CL and hold commonly used functionality. On both sides, language
specific modules for ontology representation languages and content languages
can be added. To ensure the successful operation of the modular system and
the extendibility of fiParse with new language specific modules the modules
interactvia well defined interfaces. The different modules and their interac-
tion with other parts of the fiParse system are sketched in the rest of this
section.

OntologyReader modules: The OntologyReader interface has to be im-
plemented for each ontology representation language that should be used with
fiParse. The implementation must come up with the functionality to read
ontology descriptions and to convert it to Java sources of classes and fields
with get- and set-methods. The module returns the filenames of the source
files created. To simplify the step of generating classes, the first implemented

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

2 Design and Implementation

OntologyReader module (for RDFS as ontology representation language) pro-
vides the class SourceGenerator with the functionality of creating source code
from an input DOM document containing class and property definitions in
the node structure equal to the node structure of RDFS class hierarchies. So
this module can be used without changes with other RDFS-based languages
like DAML4OIL or OWL as well. SourceGenerator also sufficiently supports
other frame-based knowledge representation forms like FIPA Meta Ontology.
In case of using SourceGenerator with new OntologyReader implementations
for non-RDFS-based languages, the only work that has to be done is parsing
the input data to DOM and to restructure some nodes in the DOM document
in order to suit the structure of a RDFS document.

Generic SourceGenerator: The generic SourceGenerator performs an
analysis of the given DOM structure read from an ontology definition for
class hierarchies and properties as well as the creation of matching Java
source code. Each ontology class is mapped to a Java class, each property to
a private field with appropriate public methods to manipulate the values of
the object during runtime. SourceGenerator is able to process the following
constructs of ontology representation languages:

e class definitions
e class hierarchies
e property definitions
e multiple domains
e multiple ranges
e cardinality restrictions
e functional properties
e data typing (boolean, integer, strings)

e container
To function properly, SourceGenerator needs to be configured for new on-
tology representation languages. A configuration file holding all necessary
information to identify the nodes containing specific information has to be
written. Configuration files for RDFS and OWL and an editor to create other
configuration files are part of the fiParse implementation. The SourceGen-
erator returns the filenames of the created source files, so that the files can
be processed by the ClassBuilder implementation.
ClassBuilder module: The ontology language independent ClassBuilder
implementation processes the source code written by OntologyReader and
SourceGenerator. It adds constructors and information about the ontology
to the source files and finally compiles the Java classes. If the option ad-
dToClStringMethodToEachObject(see table 1) is set to true, a method to-
CLString() is added to each class, containing serialization definitions for all

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

2 Design and Implementation

CLs stated on clStringLanguages. If no such method is added, the objects are
serialized by an external CLStringWriter. The call to this CLStringWriter is
accomplished by the common super class of all created classes (OntoObject)
that provides common functions of all objects created from ontologies.
Super class OntoObject: The class OntoObject adds some important
functions to all inheriting classes:

e The field CLASSID must be set by each inheriting class and must state
a unique ID to identify the class.

e The field objectID ensures secure identification of each instance of a
class.

e The method toCLString(String cl) is used to serialize an object to a
string in the given CL.

e The field usedObjects is filled with all other OntoObjects depending
from an OntoObject to ensure that depending data is written to an
ACL message as well.

e The methods equals() and hashCode() from java.lang.Object are over-
ridden to compare OntoObjects using their unique ID.

e The static method getSuperClass(Class clazz) can be used to check
whether a class is sub class of OntoObject.

Container class OntoVector: For dealing with multiple values of one prop-
erty and container definitions in ontologies, the container class OntoVector
is used. It is an extension of java.util.Vector with additional functionality to
select objects in an OntoVector by their type.

Individual Settings: For each ontology, Java classes are built for, the user
of fiParse may set individual parameters by writing a configuration file using
the editor mentioned above or by using the set-methods of the class FiPars-
eSettings. All parameters are shown in Table 1. After successfully creating
all classes, the settings of each ontology are saved in configuration files and
used by the message parser when reading or writing messages using the ob-
jects of that ontology:.

FIPA specific objects: In addition to the objects created from ontologies,
some FIPA specific objects are needed to ensure that all types of messages
used in FIPA communicative acts can be represented. Those objects, i.e.,
Action, Statement, Proposition, Code and Rule, are created according to the
RDF Schemas in the FIPA RDF Content Language Specification. The two
classes UnaryOperator and BinaryOperator can be used to represent logical
operators.

CLReader modules: The CLReader interface has to be implemented for
each CL that should be used with fiParse. The content string has to be

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

2 Design and Implementation

Parameter Description

OntologyName name of the ontology; also used as parameter ontology in ACL messages

OntologyLanguage ontology representation language; used to identify the correct OntologyReader
implementation

OntologyFile file containing the ontology description in the language set in OntologyLan-
guage

createDatabase boolean flag indicating, whether a database for living objects should be cre-
ated; if true every object is written to type-safe containers in a database to
allow operations on all living objects of a specified class

fullURL boolean flag when using URIs or URLs as CLASSID and objectID; if true,
the full URIs/URLSs are used as class names and field names, if false only the
leading part including the # is cut

packages package the created classes are put in

setMethodPrefix prefix for set-methods; standard is set

addMethodPrefix prefix for add-methods; standard is add

getMethodPrefix prefix for get-methods; standard is get

containsMethodPrefix prefix for contains-methods; standard is contains

isEmptyMethodPrefix prefix for isEmpty-methods; standard is isEmpty

nextMethodPrefix prefix for next-methods; standard is Next

allMethodPrefix prefix for all-methods; standard is All

byTypeMethodSuffix suffix for by Type-methods; standard is By Type

noCardinalityMeansMax1

boolean flag, indicating whether no explicitly stated cardinality for a property
means maxCardinality = 1 (true) or cardinality 0,* (false)

sourcesPath

relative path to the folder, where the Java sources are to be put, standard is
src

addToClStringMethodToEachObject

boolean flag, which version of serializing objects should be used; if true, a
method toCLString() is added to created classes for all CLs states in clString
Languages; if false, the external CLStringWriter is used

clStringLanguages

CLs to be added to the toCLString() methods

writeBehaviour

behaviour when writing source files; BACKUP: backup the old sources,
OVERRIDE: write the new sources without backupping the old ones, IG-
NORE: do not create new sources

print CLStringInOneLine

global boolean flag for output of CLStrings in log files; whole string in one
line (true) or formatted (false); standard is false;

DS

directory seperator; automatically set to on windows, to / on unix systems

Table 1: fiParse settings.

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

2 Design and Implementation

parsed and the included facts are represented as triples of a specific format.
These triples are returned to the TripleReader module in a vector. For each
object definition in the string, a type-triple of the form (objectID, instanceOf,
CLASSID) must be added to the triple vector. All properties of objects are
represented by fact-triples of the form (objectID, property name, value). If
a property has more than one value, for each value a triple is added.
TripleReader module: The TripleReader module is the generic part of the
message parser. It uses the type-triples received from the CLReader to in-
stantiate FIPA objects like Action and Proposition and objects as defined by
the ontology specified in the ontology parameter of the ACL message. Each
object is provided with its objectID stated in the triple. When all objects
are instantiated, the values for properties are set according to the fact-triples
by using the set- and add-methods of the created objects.
CLStringWriter modules: To be able to write object data to message
strings, the interface CLStringWriter has to be implemented for each content
language, a CLReader implementation is added to fiParse. The two kinds to
serializing objects in fiParse are implemented in CLStringWriter by means
of two methods: the method writeCLStringMethod() is used to create Java
code for serialization of created objects and the method getCLString() di-
rectly returns a content string for a given OntoObject. The required data
are extracted from classes using reflection. The developers of new CLString-
Writer implementations do not have to implement reflection for each module,
as two methods doing that part of the work are included in GenericCLString-
Writer.

GenericCLStringWriter module: Besides the reflection-based methods
to extract data from classes, the GenericCLStringWriter module is used to
link the CLStringWriter implementations for different CLs to the fiParse
system. A call to methods in GenericCLStringWriter chooses the proper
CLStringWriter module for the CL and forwards the call.

FiParser front-end: The users of fiParse, i.e., the developer of agent sys-
tems and agents, may access fiParse using the methods of the class FiParser.
There are two possibilities to generate classes from an ontology definition.
One way is to create a settings file with the fiParse-editor and using the
main method of FiParser with the ontology name as parameter. The call of
FiParser.main() loads the settings of the settings file and calls the method
createClasses(). A direct call of this method after setting all parameters in
the class FiParseSettings is the second way to generate classes. This way
can be chosen during runtime of an agent to create unknown classes on the
fly. FiParser uses a factory to choose the suitable OntologyReader for the
ontology representation language used and starts ClassBuilder and Ontolo-
gyReader functions.

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

3 Using fiParse - An example

Parsing messages follows the same procedure; after a factory has been cho-
sen, the proper CLReader, TripleReader and CLReader are called to parse
the message. An agent can initiate parsing by calling the method parseMes-
sage() in FiParser with either an ACL object or Strings containing content,
ontology and CL as parameters.

Implemented modules: At the current state, the following modules of fi-
Parse are implemented and running:

e all generic modules (FiParser, ClassBuilder, TripleReader, Generic-
CLStringWriter)

e OntologyReader modules for RDFS and OWL that may be utilised
for all other RDFS-based knowledge representation languages using a
configuration file

e generic SourceGenerator for DOM representation of ontologies to ease
implementation of further OntologyReader modules

e CLReader and CLStringWriter for the FIPA RDF Content Language

The development of CLReader and CLStringWriter for the FIPA SL Content
Language is under way.

3 Using fiParse - An example

The scenario used is a simple agent system that shall support information
exchange about time-tables of a railroad company.

The first step of system design is to create and agree upon a suitable on-
tology. A very simple ontology for the railroad example defines the following
facts:

A train has an identifier.

A train has a number of seats with a status, i.e. free/reserved, each.

A train departs and arrives in railway stations at particular times.

Each railway station has a unique name.

For the further work with the ontology it may be appropriate to create a
graphical representation of the ontology, e.g., an UML class diagram.

The second step is to formalize the facts of the ontology in an ontology
representation format understood by fiParse. Ontology definitions in RDF'S
or OWL can be created using ontology editors in a relative simple way. The
ontology editors Protege 2000 [13] and OilEd [14] are freeware and both use
a GUI to allow the creation of class hierarchies and allocation of properties.
A part of the railroad ontology formalized in OWL is shown in Listing 1.

Listing 1: ﬁxample railroad ontology.

<?xml version="1.0" encoding="UTF-8” 7>

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

3 Using fiParse - An example

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22—rdf—syntax
—HS#”

xmlns:rdfs="http: //www.w3.0org/2000/01/rdf—schema#”

xmlns:owl="http: //www.w3.0rg/2002/07/owl#”

xmlns="http://lspi.wiai.uniba.de/fiparse#’>

<owl:Ontology rdf:about="railroad”/>

<owl:Class rdf:ID="Train” />

<owl:Class rdf:ID="Station”/>

<owl:Class rdf:ID="Seat”/>

<owl:ObjectProperty rdf:ID="hasSeat”>

<rdfs:domain rdf:resource="#Train” />

<rdfs:range rdf:resource="#Seat” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="departs”>

<rdfs:domain rdf:resource="#train” />

<rdfs:range rdf:resource="#Station”/>

<rdf:type rdf:resource="http://www.w3.o0rg/2002/07/owl#
FunctionalProperty” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="train—id”>

<rdfs:domain rdf:resource="#train”/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema
#string” />

<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#
FunctionalProperty” />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="status”>

<rdfs:domain rdf:resource="#Seat” />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema
#boolean” />

<rdf:type rdf:resource="http://www.w3.o0rg/2002/07/owl#
FunctionalProperty” />

</owl:DatatypeProperty>

</rdf:RDF>

This formal representation of the ontology can be processed by fiParse to cre-
ate matching Java classes. The fiParse-editor is used to create a settings-file.
After starting the editor, necessary parameters are set. All missing values
are set to standard values:

packages railroaddemo.data
ontologyFile /ontologies/train.owl
ontologyLanguage owl

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

4 Related work

After saving the settings in a file named railroad.ocfg, fiParse can start to
generate the classes. The filename without the suffix ".ocfg” must be the name
used to identify the ontology in the agent system later. The Java classes are
generated by calling the main method of FiParser with the name of the on-
tology as parameter. fiParse places the classes in the specified package, so
that they can be used by the implementation of the agent system.

To serialize an object, e.g. an Action, to be content of an ACL message, the
method toCLString() is used:

Action a = new Action();

ACL acl = new ACLQ);
acl.setContent(a.toCLString(FiParser.RDF));

To parse a message, the method parseMessage() in FiParser must be called.
It returns an OntoVector holding all objects included in the message. The
get-methods of OntoVector are used to extract the desired objects:

ACL acl = conv.getLatestMessageIndex();
OntoVector obj = FiParser.parseMessage(acl);
Action a =

(Action) obj.getNextByType(Action.class);

Information about CL and the ontology is read from the ACL object. If
no information is included, fiParse tries to use the ontology and CL most
recently used as a default.

4 Related work

There is some work closely related to fiParse that has been useful developing
fiParse or can be used with it. First OntoJava [15] has to be mentioned.
This is a cross compiler that translates ontologies written with Protege and
Rules written in RuleML into a unified Java object database and rule engine.
Some classes of fiParse are based on OntoJava.

Furthermore, there is the Java Compiler Compiler (JavaCC) (tm) [16], which
is a useful tool to implement parsers in Java. JavaCC could be used to write
parsers for agent applications instead of using fiParse, but JavaCC is not
intended as a tool to generate classes from ontology definitions and therefore
is no replacement for fiParse. JavaCC has to be seen as a complementary
tool to fiParse that may be used to create parsers for ontology definitions to
provide new OntologyReader modules and to implement parsers for CLs to
provide new CLReader modules to fiParse.

Protege 2000 is an Ontology editor for RDFS and OWL and a knowledge
acquisition tool that can be used to provide Ontology definitions to fiParse

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

References

for the creation of Java classes. The same holds for OilEdin the context of
DAML+OIL.

Other useful software that fiParse can be used with are Java-based FIPA com-
pliant agent platforms. To mention only two of them, examples are FIPA-OS
[1] and JADE [2], which are both free FIPA compliant agent platforms.

5 Conclusion and Future Work

The usage of fiParse as a plug-in adds a set of advantages to agent platforms.
It simplifies the development of software agents because it is no longer nec-
essary to implement special parsers for each application. The definition of a
formal ontology is an essential step during the development process of most
agent systems. fiParse uses this formal ontology definition, so that almost
no additional work has to be done to obtain a working parser. Additionally,
fiParse automatically creates Java classes for all needed data objects accord-
ing to the ontology definition. Without the help of fiParse, that task would
be an additional burden for the developer.

Agents able to "learn” new ontologies during runtime can use fiParse to
generate Java classes for the newly learned expressions and words. Such a
procedure is a bit more sophisticated, but possible and intended to be used
with software agents.

Future work on fiParse is concerned with adding more pre-defined lan-
guage modules to allow the usage of more CLs and ontology representation
formats. The current implementation of the parser system serves as a frame-
work and facilitates these development efforts.

Nevertheless, with the modules yet implemented and in work, fiParse is
fully operational and ready for practical use.

References

[1] emorphia, FIPA-OS FIPA Open Source Agent Platform,
www.emorphia.com /research /about.htm,
(Harlow: 2002)

[2] Giovanni Rimassa, Runtime Support for Distributed Multi-Agents Sys-
tems, http://jade.tilab.com/papers/Rimassa-PhD.pdf, (Gennaio: 2003).

[3] IKV++ Technologies AG, Grasshopper 2 - The Agent Platform,
http://www.grasshopper.de/, (Berlin: 2003)

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

References

[4] J.R. Searle, Speech Acts (Cambridge: University Press, 1969).

[5] Foundation for Intelligent Physical Agents, FIPA ACL Message Structure
Specification, Document No. 00061, (Geneva: FIPA, 2002).

[6] Foundation for Intelligent Physical Agents, FIPA Communicative Act
Library Specification, Document No. 00037, (Geneva: FIPA, 2002).

[7] World Wide Web Consortium, RDF Vocabulary Description Language
1.0: RDF Schema, http://www.w3.org/TR/rdf-schema/, (2004)

[8] Defense Advanced Research Projects Agency, DAML+OIL (March 2001),
http://www.daml.org/2001/03/daml+oil-index.html, (2001).

[9] World Wide Web Consortium, OWL Web Ontology Language Overview,
http://www.w3.org/TR/owl-features/, (2004).

[10] Foundation for Intelligent Physical Agents, FIPA Ontology Service Spec-
ification, Document No. 00086, (Geneva: FIPA, 2001).

[11] Foundation for Intelligent Physical Agents, FIPA RDF Content Lan-
guage Specification, Document No. 00011, (Geneva: FIPA, 2001).

[12] Foundation for Intelligent Physical Agents, FIPA SL Content Language
Specification, Document No. 00008, (Geneva: FIPA, 2002).

[13] N.F. Noy et al., Creating Semantic Web Contents with Protege-2000,
http://smi-web.stanford.edu/pubs/SMI_Abstracts/SMI-2001-0872.html,
(Stanford: IEEE Intelligent Systems, 2001).

[14] Sean Bechhofer et al., OilEd: a Reason-able Ontology Editor for the
Semantic Web, 14th Intern. WS on Description Logics,
http://oiled.man.ac.uk/publications.shtml, (Stanford: 2001).

[15] Dr. Andreas Eberhart, OntoJava,
www.aifb.uni-karlsruhe.de/WBS/aeb /ontojava,
(Karlsruhe: 2001).

[16] Sun Microsystems Inc., Java Compiler Compiler (tm) - The Java Parser
Generator, https://javacc.dev.java.net/, (2003).

This is a draft of the paper published in: P. Kokol (Editor), Proceedings of the
International Conference on Software Engineering, 2005
http://www.actapress.com/Abstract.aspx?paperld=19134

