
Implementation of an Instant Messaging System
with Focus on Protection of User Presence

Karsten Loesing, Maximilian Röglinger, Christian Wilms, and Guido Wirtz

University of Bamberg
Distributed and Mobile Systems Group

Feldkirchenstr. 21, 96047 Bamberg, GERMANY
{karsten.loesing, guido.wirtz}@wiai.uni-bamberg.de

Abstract� Instant Messaging (IM) systems provide its users
with the information of which of their contacts are currently
online. This presence information supplements text communi-
cation of IM systems and is an additional value compared to
other synchronous communication media. Unauthorized users
could illegally generate online logs of users by exploiting their
presence information. Public IM systems lack the reliable means
to protect user presence and force the user to trust in the central
registry server.

In this paper, we propose an IM system, which is explicitly
designed to protect user presence without the need of a trusted
central registry. We present a Java implementation based on the
anonymous communication network Tor [1], the cryptographic
suite Bouncy Castle [2], and the distributed hash table OpenDHT
[3].

I. MOTIVATION FOR PROTECTING USER PRESENCE

Instant Messaging (IM) systems enable their users not only
to instantly send text messages, but also inform them of
which of their contacts are currently online and available
for interactive communication. This does not require explicit
communication compared to other synchronous communica-
tion media e.g. telephone. Nardi et al. [4] observed in an
ethnographic study the additional value of IM to negotiate
the presence of contacts prior to interacting with them. They
call this property �outeraction� which supplements the actual
interaction with the communication partner.

The downside of providing presence information is its
potential misuse. Presence information is inherently user-
speci�c, and knowledge of it might reveal the user's habits,
which should be private to a certain extent. Patil et al. [5]
emphasized privacy issues when providing presence infor-
mation to colleagues in collaborative working environments.
We argue that these issues increase when considering not
only authorized contacts, but also unauthorized users. User
transparency allows unauthorized users to generate an online
log, i.e. a history of logins, and evaluate personal behavior.

Although all well-known IM protocols (ICQ [6], AIM [7],
and MSN [8]) allow limitation of presence information to
authorized contacts, this property could be broken. These
protocols rely on a central registry server, which authenticates
users and assists in transmitting presence information and text
messages between users. The registry and the connections to
it could be the �rst point of attack for hackers. Apart from

that, the central server could be untrustworthy and misuse the
connection data from logged on users for its own personal
analysis.

In this paper, we propose a cryptographically secure IM
system to conceal user presence from unauthorized users
and from the central registry. It relies on the anonymous
communication network Tor [1] to conceal IP addresses of
users, which could reveal a user's presence when observing IP
communication now or in the future. The outcome of using our
protocol is that users can be sure that only currently authorized
contacts are aware of their presence without the need to trust
a third party.

Currently, there are no comparable approaches to build a
system which addresses the threat of revealing user presence.
We believe that the protection of presence information will
become even more important in the future, because users tend
to stay online whenever they are at their computers and other
communication media are equipped with awareness features
(e.g. the VoIP application Skype [9]).

The rest of this paper is organized as follows: In the next
section, we discuss the basic functions of an IM system and
derive two typical system architectures to accomplish these
functions. We consider rather conceptual system architectures
than those of deployed systems to keep our investigations as
general as possible. Section III investigates in how far those
architectures are vulnerable to unauthorized uncovering of user
presence. Then we propose a new cryptographic protocol
in section IV which is not exposed to the identi�ed threats.
Section V describes the system architecture of our implemen-
tation and discusses the most important implementation issues.
Section VI relates our approach to prior work and section VII
concludes the paper and contains some aspects of future work.

II. EXISTING IM SYSTEM ARCHITECTURES

RFC 2778 [10] de�nes an abstract model for IM services
which can be considered as an abstraction of deployed IM
systems and as a template for designing new IM systems.
There, the services of an IM system are subdivided into two
distinct services: The presence and the instant messaging
service. The presence service �allows users to subscribe to
each other and be noti�ed of changes in state�. Although
subscription is not necessarily restricted to authenticated users



for all IM systems, we only consider such systems which
require explicit authentication for subscriptions. Otherwise,
protection of presence information is useless, as the set of
subscribed users cannot be controlled by the user himself.
The instant messaging service can be used �to send each other
instant messages� (cf. [10]).

From a technical point of view, both presence and instant
messaging service require a bi-directional connection between
two users. Depending on the protocol, these messages are
either exchanged directly between two users or stored on a
central registry and forwarded to another user either directly
or on demand. The presence service requires the possibility
to send presence messages containing the user's current state
when entering the system and whenever there are changes in
his state including when leaving the system. Additionally,
a user should be able to send a request to learn about his
contacts' states when entering the system. On the other
hand, the presence service requires receiving messages, either
as a response on his requests for his contacts' states, or
unsolicited whenever the state of one of his contacts changes.
Unsurprisingly, the instant messaging service also requires the
possibility to send instant messages to contacts and receive
instant messages without being solicited.

Basically, there are two possible architectures available to
realize an IM system: Either the users exchange presence and
instant messages directly, or they use a central node to store
and forward all messages to their destination. Regardless of
the choice, a central node is required.

a) Hybrid architecture: If users communicate directly
with each other, a central node is necessary to resolve the
users' current physical addresses. The reason is that in practice
the physical address of a user's node might be a dynamic IP
address or might change due to a change of the user's location.
In that case, the contacts have to learn about the user's new
physical address in order to directly contact him. Therefore,
a central node is applied to act as name service on behalf of
the users.

Dave

registry

Alice

CarolBob

Fig. 1. IM system architecture with a registry merely acting as a name
service.

Figure 1 shows the system architecture with a registry
acting only as a name service and the users exchanging
presence and instant messages directly. Every user entering
the system connects to the registry to inform it about his
current IP address and to request the mappings for his contacts.
Only authorized contacts are allowed to learn about a user's
presence. Therefore, the registry may only return the physical
addresses of those users who have agreed to it. This is
accomplished by storing a list of authorized contacts in the
registry. In the next step, the user establishes connections to

his contacts to exchange presence and text messages. In this
step, there should be a mutual authentication of both users.

b) Centralized architecture: The second system archi-
tecture applies a central node to store messages at a central
registry on behalf of a user and forward them to the user's
contacts either directly or on demand. While instant messages
are likely to be passed directly to their recipients, a user's
state information can be stored in the registry to answer
future requests by his contacts. In contrast to the �rst system
architecture, this architecture does not imply direct interaction
between two users.

Dave

registry

Alice

CarolBob

Fig. 2. IM system architecture with a registry that stores and forwards all
messages in the system.

Figure 2 illustrates the second system architecture by an
example. A user connects to the registry and authenticates
himself to it. The registry forwards the user's initial presence
to his contacts and replies to the user which of his contacts
are likewise currently connected. Therefore, the registry needs
to know about the user's contacts as in the �rst system
architecture. The registry also mediates text messages sent
by one user to another.

The well-known systems rely mostly on a central registry
to store and forward messages. The reason is that users are
not required to accept incoming connections which might be a
problem due to �rewalls or network address translation (NAT)
boxes. Obviously, the drawback of the centralized architecture
is that most work is accomplished by the central registry, so
that this approach is less scalable than the more decentralized,
hybrid approach. Some systems also implement a mixture of
both architectures by forwarding presence and text messages
using the registry and handing out the user's IP addresses for
direct �le transfers.

III. SECURITY ANALYSIS

Our focus is an IM system that protects its users' presence
information. While this information shall be transmitted
to a user's authorized contacts, it must not be known to
unauthorized users. Although this kind of protection is meant
to be provided by all currently deployed IM systems, it can be
circumvented. We will point out some weaknesses in order to
determine necessary system requirements to protect presence
information. For a more elaborate discussion, see [11].

The �rst potential weakness of deployed IM systems is the
fact that the presence of all system users is stored in the
registry. In a hybrid architecture, every user connects once
to the registry when entering the system thus revealing his
presence from that point of time up to an uncertain time
in the future. In a centralized architecture, every user stays



connected to the registry during his entire online session,
thus revealing his presence to the registry completely. This
knowledge could be exploited by an untrustworthy system
provider or could be exposed to an attacker by breaking into
the registry. As a counter measure, no information that is
passed to the registry may reveal any user's presence in the
system. This requirement is the most dif�cult to realize and
is therefore the central part of our contribution.

Another threat is the linkability of messages to a certain
user, thus revealing that user's presence. Depending on the
chosen architecture, this applies either to messages exchanged
between a user and the registry, or to messages sent from
one user to another. In order to prevent this threat, all
messages must be encrypted, so that neither content nor sender
or receiver are disclosed. Some deployed systems offer link
encryption to prevent this threat.

The last threat we consider is that the mapping between
a user and his current IP address is revealed. Being aware
of this mapping, an attacker could monitor communication
originating from or being sent to that IP address and thus
conclude presence of the associated user. If a user's IP address
is static, this attack can be performed at any time in the future.
In a hybrid architecture, a user's IP address must be known at
least to his contacts, so that they can establish a connection
to him. Although the user's current contacts may be aware
of the user's IP address, they are not allowed to know about
it after the user has revoked their authorization by removing
them from his contact list. Unfortunately, knowledge about
this mapping does not disappear at former contacts, so that no
user should learn about the mapping at all. In a centralized
architecture, the user's IP address is known to the registry
which passes messages to the user. Hence, a user's IP address
is either known to unauthorized users or to the registry which
we do not consider to be trustworthy. One possible way to hide
the mapping between a user and his IP address is to apply an
anonymous communication network.

IV. OVERALL PROTOCOL DESIGN

After discussing the possible threats to IM systems with
regard to protection of user presence, we present a new IM
system design which is not exposed to these threats.

The basic decision in designing the new IM system is
whether to apply a hybrid or a centralized architecture. As
we demonstrated above, both architectures can exhibit threats
which lead to presence exposure. These threats can be
counteracted in both architectures with more or less similar
measures. We decided to apply a hybrid architecture, because
of reasons which are beyond our attempt to protect user
presence: The main reason is that the registry in a hybrid
architecture simply has to provide a storage mechanism instead
of a rather sophisticated application logic of a storing and
forwarding registry. This allows us to make use of deployed
storage systems, e.g. a distributed hash table (DHT), instead
of deploying a registry ourselves. However, this is not a
conceptual issue. It should also be possible to redesign our
protocol to match a centralized architecture, if required.

Our design consists of two main principles that refer to the
different technical levels of security threats:

A We attempt to hide the mapping between a user and
his IP address by using an anonymous communication
network, so that disclosure of IP communication does
not reveal the presence of a certain user.

B We apply a cryptographic protocol between two users
and the central registry. This protocol allows the two
users to establish a connection to share presence in-
formation and text messages and ensures that no other
participant in the system learns about the presence of
either user.

The protocol consists of three possible communication
links as the following scenario illustrates. The contents of
exchanged messages are subject to the subsequent discussion.

When connecting to the system, Bob publishes his address
at the registry which is simply acknowledged by the registry:

B ↔ R (1)

Alice, after doing the same operation, retrieves Bob's
address from the registry:

A ↔ R (2)

If Alice could retrieve Bob's address, she establishes a
connection to Bob to exchange presence and text messages
with him:

A ↔ B (3)

A. Anonymous communication network
The purpose of the anonymous communication network is

to hide the IM user's IP address in all communication links.
Connections to the registry require anonymity of the user as
initiator, but not necessarily of the registry as recipient. The
reason is that the IP address of the registry may be known to
anyone. For connections between two users, both IP addresses
must be hidden.

Initiator anonymity is provided by most anonymous com-
munication networks, because it is used for typical client-
server settings, e.g. anonymous Web browsing. In contrast
to that, recipient anonymity is only required for offering an
anonymous service or for peer-to-peer settings and is not
provided by all anonymous communication networks. Tor
[1] offers both types of anonymity. Using sender anonymity
is accomplished by accessing a remote address via the Tor
network which hides the sender's IP address. In order to make
use of recipient anonymity, the user has to register a so-called
hidden service which can then be accessed using a unique
logical address via the Tor network. Tor allows hiding both,
the initiator's location and the location of the hidden service.

We apply Tor to our system for incoming and outgoing
communication. A user provides a hidden service that can
be contacted by his contacts to exchange presence and text
messages. In our design, the hidden service address must be
changed from time to time in order to prevent unauthorized
users from identifying a certain user by observing the users
hidden service address.



B. Cryptographic protocol
While the anonymous communication network hides the

users' IP addresses, the purpose of the cryptographic protocol
is to hide all user-speci�c information of the message content
from unauthorized users and from the registry. This applies to
all three communication links that have been identi�ed above.

1) Publication in the registry: The �rst communication
takes place when Bob enters the system and deposits his
address in the registry, so that Alice and his other contacts
may contact him when they enter the system, too. According
to our requirements, Bob has to encrypt his address, so that
only his contacts may decrypt it. This can be achieved
with public key encryption by encrypting the address for
all intended recipients using their public keys. Therefore,
we assume that all users in the system have generated a
key pair for an asymmetric encryption scheme, e.g. ElGamal
[12]. Further we expect that every user has created a public
key certi�cate for publication on a global key server and
has informed his contacts about the key identi�er, so that
they can download the user's certi�cate. It is important to
notice that we do not consider communication to a global
key server as a threat to our attempt to protect the user's
presence. Such a connection must only be performed once
and without a direct chronological correlation for using the
IM system. An alternative to using a global key server would
be the transmission of public key certi�cates using another
communication media.

Bob has to include a signature to the message before
encrypting it. In doing so, Alice can verify that the address
really belongs to Bob. Otherwise, an attacker could generate
such a message and make Alice connect to his address, thus
revealing her presence. We require another key pair for an
asymmetric signature scheme, e.g. RSA [13]. The public key
can also be published with the public key certi�cate of a user.

Although the content of Bob's address is now protected
from unauthorized users including the registry, Bob has to
provide a means for Alice and his other contacts to �nd it. If
he did not, Alice would have to try to decrypt all addresses
that are stored in the registry. This would ensure that only
authorized users can learn about Bob's address, but obviously,
this solution does not scale. In an ordinary name service,
Bob could use his user name as a key for storing his address.
Unfortunately, this would immediately reveal his presence in
the system. Bob could also store his address separately for
every contact using his contact's user name as key. However,
this would reveal the contact's presence when accessing the
addresses that have been deposited for him.

One solution that reveals neither the publisher's nor the
retriever's presence is to previously agree on a secret key for
publication. As long as an attacker cannot relate this secret
key to either publisher or intended retriever, the observation
of a publication or a retrieval using this key does not reveal
presence of a certain user.

Although Bob could agree upon the same secret key with
all of his contacts, this would make removal of a contact
more dif�cult. A removed contact would not automatically

forget the secret key, so that he could still determine the
user's presence from observing a publication under that key.
Thus, Bob would have to agree on a new secret key with
his remaining contacts whenever he removes a contact, which
is quite cumbersome. Instead, Bob agrees on separate secret
keys with all of his contacts and publishes his address for
them individually. Thus, he can remove an existing contact
by simply stopping to publish his address for that contact.

The agreement on a secret key does not permit commu-
nication within the system, because communication is not
possible until the address of the communication partner has
been retrieved. This makes ordinary key agreement using
a Dif�e-Hellman key agreement schema [14] inapplicable,
because it requires mutual exchange of two public keys based
on the same key parameters. We can however modify this
schema to use �xed parameters for all users in the system
and use pre-computed Dif�e-Hellman public keys. Such a
schema is e.g. described by Menezes et al. as �Dif�e-Hellman
with �xed exponentials� [15]. These public keys are added
to a user's public key certi�cate. Every two users may then
combine their own private key with their contact's public key
to calculate their shared secret key. This approach reduces
the communication to the mutual exchange of public key
certi�cates.

In order to prevent from generating patterns of publication
keys, we want to change them on a regular basis. Thereby an
unauthorized user cannot derive information from observing
the publication of addresses using the same key or a combina-
tion of keys. Therefore, we have to ensure that an unauthorized
user cannot conclude that two distinct keys that have been
generated at different times belong to the same pair of users.
To achieve this, we append the number of days since 1970
of the local system time (GMT) to the secret key and apply a
cryptographically secure hash function, e.g. SHA-1 [16], to the
resulting value. The result is a key that can only be constructed
by the two users holding the Dif�e-Hellman private keys and
that changes every day. We use this value for publishing and
retrieving the addresses of the two users.

In summary, the �rst message consists of the following
values: Bob (B) sends to the registry (R) two values: The �rst
value is the concatenation of his shared secret key with Alice
KAB and the current day D on which the secure hash function
H is applied. The second value consists of the address of his
hidden service HSB and a signature of it created with his
signature function SB . Both values are encrypted for Alice as
recipient using her encryption function EA.

B → R : H(KAB + D), EA(HSB , SB(HSB)) (4)

2) Retrieval from the registry: The second communication
takes place between Alice and the registry. It is quite similar to
the �rst communication with the difference, that she requests
the encrypted messages using the same key as Bob used for
publication and that the registry replies with the encrypted
address:



A → R : H(KAB + D) (5)

R → A : EA(HSB , SB(HSB)) (6)

3) Message exchange between two users: The third com-
munication occurs when Alice tries to establish a connection to
Bob using the address that she has received from the registry.
This communication needs to be encrypted, so that neither Al-
ice's nor Bob's presence can be derived from their exchanged
messages. We apply a hybrid encryption schema starting with
an asymmetric encryption using the asymmetric encryption
key that was already used above and a symmetric encryption,
e.g. Triple-DES [17], using a session key that can be agreed
on at the beginning of the communication. In addition to
encryption, Alice has to authenticate herself to Bob, because
in principle, anyone could initiate a communication to Bob's
hidden service, not only Alice or one of Bob's other contacts.
Authentication can again be performed by adding a signature
that is created using Alice's signature function.

The resulting messages for establishing a communication
and for subsequent messages contain the following values:
Alice sends a fresh session key KS and a signature of it
using her signature function SA, both encrypted using Bob's
encryption function EB to Bob. Succeeding messages M are
then encrypted using the symmetric encryption function ES

using the shared session key. Alice can be sure that she is
really talking to Bob, because only Bob can decrypt the session
key and use it for encrypting messages addressed to her.

A → B : EB(KS , SA(KS)) (7)

B ↔ A : ES(M) (8)

This cryptographic protocol is not exposed to the threats we
described above. The registry does not learn any user-speci�c
information, but merely acts as a storage for encrypted key-
value pairs. All messages are encrypted and do not reveal any
information about sender or recipient. Finally, IP addresses
are hidden using the anonymous communication network.

V. IMPLEMENTATION

After describing the underlying protocol, as well as how it
addresses the threats discussed in III, we provided a sketch of
the entire system being implemented and the subsystems on
which it is based on.

The architecture of our IM system is based on four other
systems:

1) The low-latency anonymous communication network
Tor [1]: We only use Tor as a communication layer for
outgoing and incoming connections. A so-called Tor
proxy runs on the local client machine and connects to
the so-called Tor routers which are distributed over the
Internet.

2) The Java implementation of the OpenPGP crypto system
[18] Bouncy Castle [2]: This is a cryptographic API
which provides cryptographic primitives for symmet-
ric and asymmetric encryption as well as secure hash

functions. PGP public key servers provide storage of
OpenPGP-compatible public key certi�cates.

3) The distributed hash table OpenDHT [3] which we use
as registry: OpenDHT is a deployed distributed hash
table that can be used for testing new peer-to-peer
applications. Its nodes can be accessed using a simple
protocol based on XML-RPC [19]. A current list of
OpenDHT nodes can be downloaded from the OpenDHT
web server via HTTP.

4) The Jabber-based [20] Wild�re server [21], which we
adapt for presenting the IM service to the local user:
The original purpose of this server is to connect Jabber
clients to the Jabber network. Nevertheless, we adapted
it to connect Jabber clients to our own IM network. The
primary purpose for our implementation is to provide
users with a comfortable interface by allowing them to
use a potentially more user-friendly Jabber client.

Our implementation is located between the Wild�re server
as the presentation layer and the Tor proxy as the communica-
tion layer. It is implemented in Java 1.5 and is running in the
same Java virtual machine as the Wild�re server. It performs
the tasks that are described in the protocol design above. It
maintains its own hidden service for incoming connection
requests and periodically publishes its address in the DHT. It
also attempts to retrieve addresses from its contacts. Whenever
it receives a hidden service address, it tries to establish a
connection to the contact and starts exchanging presence and
text messages. On disconnecting, our implementation sends
a last presence message and closes the existing connections.
Figure 3 shows an overview of the architecture.

local Tor proxy

our

implementation

Jabber-compatible

client

Wildfire server

OpenDHT

node list

OpenDHT

network

PGP key

server
Tor

directory

Bouncy Castle XML-RPC

network of

Tor routers
9050 9051

to hidden

services

5222

local node

Fig. 3. Overview of the implemented system architecture.

In the following text, we go into the details as to how these
subsystems had to be adopted in order to provide the proposed
protocol.

A. Tor
The Tor network consists of approximately 800 Tor routers

(as of August 2006 [22]) that are distributed over the Internet
and create an overlay network on top of TCP/IP. The Tor
protocol has a binary format. Its speci�cation is available as
open source. The Tor directory is a central network component



that is used e.g. for managing the network topology. It is
currently replicated among 4 servers. In order to use Tor for
anonymizing connections, users access it using a local Tor
proxy. Although this is rather the exception, it is also possible
to access Tor using a local Tor router instead of a Tor proxy.
The implementations of all Tor components are written in C
and are available as open source.

The architecture of our IM system incorporates a local Tor
proxy that is running as a separate process. The reason for
this is that the rest of the implementation is written in Java
and that there does not exist a Java implementation of the
Tor proxy yet. Our implementation connects to the local Tor
proxy using a couple of TCP sockets: The Tor proxy provides
a SOCKS port running on TCP port 9050 that can be used for
outgoing connections. Furthermore, it offers a control port on
TCP port 9051 that can be used to change the con�guration of
the Tor proxy and send commands to it. In addition to that, our
implementation opens one TCP port for every offered hidden
service to which the local Tor proxy connects. Finally, the Tor
proxy opens quite a lot of outgoing connections to remote Tor
routers. However, it does not require the local node to accept
incoming connection requests.

Tor hidden services are usually con�gured using the con�g-
uration �le torrc before starting the Tor proxy and remain
the same during execution time. As already stated above,
we have to change the hidden service address from time to
time. This is accomplished by deleting the hidden service
con�guration and creating a new one which typically requires
restarting the Tor proxy. Unfortunately, this closes all running
connections which we would rather avoid. That is why we
access the Tor proxy via a separate data connection. This can
be accomplished with a speci�c Tor controller API which is
available in Java from the Tor project. Using the controller,
we can con�gure new hidden services and recon�gure existing
ones during runtime.

After registering a new hidden service, we have to �nd
out and publish its address, so that other users can access
it via the Tor network. Every hidden service has its own data
directory for storing its private key and the �le hostname.
The latter contains the hidden service address formatted as
base32 string [23] of 16 characters (80 bit length) plus the
extension �.onion�. This address can be passed to a remote
Tor proxy to establish a connection to this hidden service.

B. Bouncy Castle and OpenPGP key servers
According to our design, we require implementations

of cryptographic primitives for symmetric and asymmetric
encryption, a secure hash function, and key agreement.
OpenPGP speci�es algorithms for all of these cryptographic
primitives, e.g. RSA, ElGamal, Triple-DES, SHA-1, and DH.
It also speci�es a format for public key certi�cates. Due to
the widespread employment of email encryption, a couple of
OpenPGP implementation and a good infrastructure of key
servers exist.

Bouncy Castle is an open-source Java implementation of
both, the Java Cryptography Extension (JCE) service provider

interface and the OpenPGP standard. The cryptographic
primitives can be accessed via the JCE API which is included
in Java by default. In order to use Bouncy Castle with realistic
key sizes, one has to install the so-called Unlimited Strength
Jurisdiction Policy Files which merely means to exchange two
�les in the JRE installation folder. The OpenPGP implementa-
tion provides access to cryptographic keys and messages in the
OpenPGP format, which is also required for message exchange
with OpenPGP key servers.

We had to perform one small, but important change to the
way Bouncy Castle encrypts messages asynchronously. The
OpenPGP standard adds a so-called key hint to every encrypted
message. This hint contains the identi�er of the key which
must be used for decryption. It relieves the recipient from
trying several keys until �nding the right key. Unfortunately,
this key hint uniquely identi�es an IM user who retrieves
an address that has been encrypted for him and reveals his
presence. Therefore, we had to change the implementation
of Bouncy Castle, so that the key hint is overwritten with a
random identi�er after performing the encryption.

OpenPGP does not include a speci�cation for pre-computed
Dif�e-Hellman keys as we need them for agreement of a secret
key without direct communication. Hence, we generate an
ElGamal key pair based on system-wide identical parameters
and add its public key to the public key certi�cate of a user.
The calculation of the secret key shared by two users is
obtained by converting these ElGamal keys into DH keys and
performing the DH key agreement.

Public key certi�cates obtain unique identi�ers by means of
the main key identi�er which is the RSA signature key. This
identi�er consists of the lowest 32 bits of the 160-bit hash
value of the key. We use this identi�er as a pseudo-unique
user name and for retrieving a user's public key certi�cate
from the key server.

Although Bouncy Castle also provides symmetric ciphers,
we do not need them. The reason is that hidden service
connections are always end-to-end encrypted between the two
Tor proxies. Therefore, we do not need further symmetric
encryption, but only authentication of the initiator of a hidden
service connection to the hidden service provider. This is
accomplished by replacing the session key in the protocol
above by a nonce and attaching a signature of this nonce
instead of the signature of the session key.

C. OpenDHT
Our protocol assumes a central registry for exchanging

encrypted Tor hidden service addresses. The requirements to
this registry are rather simple. It merely has to support two
operations: Storing given key-value pairs and returning the
values belonging to a given key.

Although we could have implemented a new registry provid-
ing this task, we wanted to rely on a deployed infrastructure.
One possibility would have been to store these entries in the
Tor directory which provides a similar task e.g. for router
descriptors and hidden service descriptors. According to the
Tor developers, the Tor directory is already a performance



bottleneck [24]. Hence, we refrained from it, because we do
not want to decrease performance. Apart from that, storing
a new type of entries would have required changing the
implementation and redeploying the Tor directory servers.

We selected a publicly available distributed hash table
(DHT) as a logic central registry. It guarantees, that a key-
value pair that is successfully stored at one DHT node can be
retrieved from any other DHT node at least for a given time-
to-live. We chose OpenDHT [3] to use as registry, because it
is a deployed and freely available DHT service. Its purpose is
to allow developers to test DHT-based applications without the
need of setting up an own DHT. OpenDHT restricts the key
size to 160 bits and the value size to 1024 bits. The key length
is suf�cient as SHA-1 provides equally sized hash values. The
restriction of values is suf�cient for our application, because
operations like attaching a signature, random padding, and
asymmetric encryption do not let it increase beyond 600 bits.
OpenDHT allows storing multiple values for the same key,
which is important for our protocol imlementation, because
two contacts both use the same DHT key for up to one day,
but with possibly changing DHT values. OpenDHT can be
accessed by a simple protocol based on XML-RPC [19].

D. Wild�re server
The purpose of the Wild�re server for our implementation

is merely to provide a user-friendly interface. This is accom-
plished by connecting a Jabber-compatible messaging client
to the locally running Wild�re server. The alternative would
have been to implement an own user interface or extend an
existing messaging client. We did not want to put too much
effort into creating and maintaining a nice GUI, but rather
focus on providing a correct and secure implementation.

Wild�re provides a sophisticated mechanism for creating
plug-ins. It allows registration of event interceptors for
adding or removing local users, starting or stopping local user
sessions, changing presence state, and sending text messages.
Presence updates and text messages can easily be sent to
attached clients. The server contains a database that can be
extended by user-de�ned tables. It also provides an own
logging mechanism. The user roster containing user and
contact data can be accessed from the plug-in. Installation
of a plug-in is accomplished by copying an appropriate jar
�le to the plug-in directory and starting the server.

E. Preliminary protocol performance evaluation
The important issues regarding the protocol implementation

have already been described in section IV. The detailed
technical issues are of minor interest here.

Instead, we present some early performance measurements
of the factors, which have an impact on our protocol im-
plementation. The purpose of these measurements is not to
compare our approach with existing IM systems (which do not
have our privacy properties) or to �nd reasons for the found re-
sults. We are rather interested whether our approach performs
in a way that is acceptable for an �instant� messaging system,
or not. We measured the delays of requests to OpenDHT over

Tor (and whether Tor or OpenDHT is responsible for these
delays) and of communication to hidden services of other IM
users (connection establishment and subsequent messages). In
detail, we measured the following data:

1) The round-trip time for an initiator-anonymous request
to a public DHT server. Requests are malformed on
purpose, so that they can be answered by the DHT node
directly and do not require further requests to other DHT
nodes.

2) The time to answer a DHT request (put operation with
random key and value), but using a direct IP connection
instead of Tor.

3) The time to establish a connection to a running hidden
service

4) The round-trip time for messages to a hidden service
using an established connection.

For (1) we found that Tor features a round-trip time of 1.97
± 0.06 seconds (all values are given as mean value ± standard
deviation). Only 2 outliers out of 64,905 measured values
took 7.53 and 7.41 seconds, respectively, with the next smaller
value of 2.33 seconds. The surprisingly low standard deviation
indicates that Tor establishes connections in advance of actual
requests. Most of the time seems to be used for encryption and
decryption on the Tor routers which usually takes a constant
amount of time.

The response times of OpenDHT that we measured in (2)
are 5.89 ± 12.5 seconds. The high variance is characteristic
for a DHT, in which response times increase logarithmically
depending on the number of nodes.

The time to establishment a connection to a hidden service
in Tor (3) is 5.39 ± 12.4 seconds. This high standard deviation
is a sign that Tor has to establish new circuits in order to
connect to a hidden service or that there are other problems
in Tor.

After establishing a connection to a hidden service, message
round-trip times (4) are 2.32 ± 1.66 seconds with a maximum
value of 9.99 seconds. This comparatively low variance seems
to result from encryption and decryption, rather than from
establishment of new Tor circuits.

The total time for establishing an initial connection to an IM
contact can be calculated by adding twice the request time to
a DHT node over Tor (1) and performing a DHT request (2),
i.e. one request for a put operation and one for a get operation,
plus the time to establish a connection to a hidden service (3).
The calculated mean time for this is 21.1 seconds. Afterwards,
exchange of text messages and presence information takes 2.32
seconds in the mean (4).

We also performed some basic measurements of OpenDHT
concerning its reliability. We found that the DHT keeps all
stored values for the speci�ed time-to-live.

In our opinion, the measured values indicate that our
approach is acceptable for a typical usage of IM. However,
these measurements should only be considered as �rst step
towards a complete performance evaluation. So far, we have
not deployed our implementation on a large scale.



VI. RELATED WORK

Most related work on security in IM systems focuses on
message con�dentiality and authentication of users. Cerulean
Studios [25] have developed SecureIM, an encryption protocol
for instant messages on top of AIM and ICQ that provides
message integrity and con�dentiality. Neither deals with
authentication of communication partners nor con�dentiality
of presence information. VeriSign offers a personal certi�cate
[26] for signing and encrypting text messages within the AIM
network. It provides authentication, integrity, and con�dential-
ity of instant messages, but no privacy of presence information.
The wija project [27] provides an IM application based on
the Jabber protocol which allows users to encrypt and sign
instant messages and to sign presence information, but does
not conceal presence from other users. ScatterChat [28] is
an extension of the open-source multi-messenger Gaim [29]
which allows encryption of instant messages and anonymity
by accessing the public IM server via Tor�unfortunately, this
still reveals the user's presence to the registry.

Prior to this paper, we have published an earlier version
of our protocol [11] which underwent some important design
changes in the course of its implementation.

Currently, there are no comparable approaches that consider
the threat of revelation of presence by an untrustworthy system
provider or an attack on the central registry. However, we do
think that such attacks are possible and that the value of a
user's presence information is worth protecting.

VII. CONCLUSION AND FUTURE WORK

We have proposed an IM system that is explicitly designed
to protect user presence without the need of a trusted, central
registry. We presented a Java implementation based on the
anonymous communication network Tor, the cryptographic
suite Bouncy Castle, and the distributed hash table OpenDHT.

The next step is a comprehensive and more detailed threat
analysis of our cryptographic protocol. We intend to perform
a formal veri�cation of its security properties. A performance
evaluation of the deployed system is up to future work, too.

There might also be some bene�t from generalizing our
solution from IM systems to peer-to-peer systems in general.
It could for example, be applied to friend-to-friend networks
[30], i.e. peer-to-peer networks, which only allow connections
between mutually authorized nodes. Therefore, we subdivided
out implementation into an IM-speci�c and a more general
part, which provides a lightweight, socket-like API.

ACKNOWLEDGEMENT

The authors would like to thank Jens Bruhn, Sven Kaf�lle,
and Andreas Schönberger for numerous fruitful discussions.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, �Tor: The second-
generation onion router,� in Proceedings of the 13th USENIX Security
Symposium, 2004, pp. 303�320. [Online]. Available: http://www.usenix.
org/events/sec04/tech/full\ papers/dingledine/dingledine.pdf

[2] Bouncy Castle project homepage. [Online]. Available: http://www.
bouncycastle.org/

[3] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, �OpenDHT: A Public DHT Service and Its Uses,�
in SIGCOMM '05: Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM Press, 2005, pp. 73�84.

[4] B. A. Nardi, S. Whittaker, and E. Bradner, �Interaction and outerac-
tion: instant messaging in action,� in Proceedings of the 2000 ACM
conference on Computer supported cooperative work, December 2000.

[5] S. Patil and A. Kobsa, �Preserving Privacy in Awareness Systems,�
in Wissen in Aktion, 2004, pp. 119�130. [Online]. Available:
http://www.ics.uci.edu/∼kobsa/papers/2004-FSKuhlen-kobsa.pdf

[6] ICQ homepage. [Online]. Available: http://www.icq.com
[7] AOL Instant Messenger homepage. [Online]. Available: http:

//www.aim.com
[8] MSN Messenger homepage. [Online]. Available: http://messenger.msn.

com
[9] Skype homepage. [Online]. Available: http://www.skype.com

[10] M. Day, J. Rosenberg, and H. Sugano, �RFC 2778 � A Model for
Presence and Instant Messaging,� February 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2778.txt

[11] K. Loesing, M. Dorsch, M. Grote, K. Hildebrandt, M. Röglinger,
M. Sehr, C. Wilms, and G. Wirtz, �Privacy-aware Presence Management
in Instant Messaging Systems,� in 20th IEEE International Parallel and
Distributed Processing Symposium, April 2006.

[12] T. ElGamal, �A public key cryptosystem and a signature scheme based
on discrete logarithms,� in Proceedings of CRYPTO 84 on Advances in
cryptology. New York, NY, USA: Springer-Verlag New York, Inc.,
1985, pp. 10�18.

[13] R. L. Rivest, A. Shamir, and L. Adleman, �A method for obtaining dig-
ital signatures and public-key cryptosystems,� Commun. ACM, vol. 21,
no. 2, pp. 120�126, 1978.

[14] W. Dif�e and M. E. Hellman, �New Directions in Cryptography,� IEEE
Transactions on Information Theory, vol. IT-22, no. 6, pp. 644�654,
November 1976.

[15] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press Inc., U.S., December 1996.

[16] �Proposed Federal Information Processing Standard for Secure Hash
Standard,� Federal Register, vol. 57, no. 21, pp. 3747�3749, January
1992.

[17] H. Kummert, �RFC 2420 � The PPP Triple-DES Encryption
Protocol (3DESE),� September 1998. [Online]. Available: http:
//www.ietf.org/rfc/rfc2420.txt

[18] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, �RFC 2440
� OpenPGP Message Format,� November 1998. [Online]. Available:
http://www.ietf.org/rfc/rfc2440.txt

[19] Apache XML-RPC project homepage. [Online]. Available: http:
//ws.apache.org/xmlrpc/

[20] Jabber project homepage. [Online]. Available: http://www.jabber.org/
[21] Wild�re server project homepage. [Online]. Available: http://www.

jivesoftware.org/wild�re/
[22] Number of running Tor routers. [Online]. Available: http://www.

noreply.org/tor-running-routers/
[23] S. Josefsson, �RFC 3548 � The Base16, Base32, and Base64 Data

Encodings,� July 2003. [Online]. Available: http://www.ietf.org/rfc/
rfc3548.txt

[24] R. Dingledine, N. Mathewson, and P. Syverson, �Challenges in
deploying low-latency anonymity (DRAFT),� 2005. [Online]. Available:
http://tor.eff.org/cvs/tor/doc/design-paper/challenges.pdf

[25] Cerulean Studios homepage. [Online]. Available: http://www.
ceruleanstudios.com/

[26] Enterprise-Level Security and Management for Instant Messaging.
[Online]. Available: http://www.verisign.com/stellent/groups/public/
documents/white paper/005324.pdf

[27] Wija project homepage. [Online]. Available: http://www.
media-art-online.org/wija/

[28] ScatterChat project homepage. [Online]. Available: http://www.
scatterchat.com/

[29] Gaim project homepage. [Online]. Available: http://gaim.sourceforge.
net/

[30] D. Bricklin, �Friend-to-Friend Networks.� [Online]. Available: http:
//www.bricklin.com/f2f.htm


