1 Introduction

Integrating MASIF and FIPA Standards for
Agent and Agent System Interoperability

Sven Kalffille
Distributed Systems Group
Otto Friedrich Universitdt Bamberg
Feldkirchenstrasse 21
96052 Bamberg, Germany
email: sven.kaffille@wiai.uni-bamberg.de

Guido Wirtz
Distributed Systems Group
Otto Friedrich Universitdt Bamberg
Feldkirchenstrasse 21
96052 Bamberg, Germany
email: guido.wirtzQwiai.uni-bamberg.de

ABSTRACT

In order to use agent technology for implementing complex software systems,
widely available software platforms are as crucial as methods to support their
interoperability. The paper discusses the concepts of a system that combines
the benefits of the two most accepted standards in the agent world, namely
FIPA and MASIF, into a platform that permits the interaction as well as
migration of agents from both worlds. Additionally, an implementation based
on the FIPA-OS implementation of the FIPA standard is described.

KEY WORDS
software agents, platforms, interoperability, standards

1 Introduction

In the last decades the complexity of tasks that are carried out by software as
well as the complexity of the software’s environment, e.g. due to distributed

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



1 Introduction

systems, has grown rapidly. Efforts to establish new technologies for mod-
elling and implementing software in order to handle this kind of complexity
are manyfold. Among them, software agents are regarded as the next step of
software technology [1]. Agent technology promises to make the modelling
and development of heterogenous and distributed systems easier, as it pro-
vides a higher abstraction level than other approaches. In order to make
use of the benefits of agent technology beyond the early development steps
of analysis and design, platforms that provide services for agents and on
which agents can operate are required for implementing agent-based designs
directly into agent systems.

To faciliate agent technologie’s diffusion open standards for these plat-
forms are necessary to enable interoperability between agents and agent plat-
forms of different vendors. For interoperability common interfaces of agents
and agent systems are required, that are independent of the agents’ technical
environment. This aspect has been addressed by the Foundation for Intelli-
gent Physical Agents (http://www.fipa.org/) by its so-called FIPA-standards.
The focus of FIPA standards is on interoperability of agents and multi-agent
systems through standard interfaces on the level of agents’ communication
and a common agent management reference model. As a second requirement,
standard interfaces of agents are required for interoperability of different pro-
grammers’ agents and standard interfaces of agent systems are recommended
to ease the administration of agent systems of different vendors. This aspect
is handled by the Object Management Group (OMG) through the Mobile
Agent System Interoperability Facility (MASIF) standard for mobile agent
systems based on OMG’s CORBA [16]. The standard focusses on interoper-
ability on the agent system level and security mechanisms for mobile agents.
Agent to agent communication has not been specified by the OMG. Agent
management, agent transfer, agent and agent system names as well as agent
system type and location syntax have been standardized.

As the FIPA standard specifies interoperability on the agent communica-
tion level and MASIF addresses minimum interoperability requirements on
the agent system level it seems promising to combine both standards into
one agent platform. This paper shows how this can be done by extending
an existing FIPA compliant agent platform - FIPA-OS - to be MASIF com-
pliant. For this purpose, the following problems have to be solved in a way
that is consistent with both platforms:

1. Naming of agents, agent platforms and systems,
2. integration of different infrastructures,

3. implementing agent mobility, and

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



2 Agent Standards

4. applying appropriate security mechanisms.

Due to the state of the art of the used platform regarding security, interop-
erability w.r.t. this issue has to be left to future work. For the extension of
FIPA-OS the goal is to reuse as many existing components of FIPA-OS as
possible and to keep the extension decoupled from the original FIPA-OS in
order to permit easy migration to new versions of the platform. In order to
evaluate the proposed solutions to the problems stated above, the concepts
have been implemented into an interoperable platform for both standards.
The rest of the paper is organized as follows: In section 2, a short description
of the FIPA standard and the MASIF standard is given as this forms the
basis of our work. Section 3 discusses how these standards can be integrated
addressing the problems 1 — 4 step by step. Section 4 describes an imple-
mentation of the concepts based on FIPA-OS. Section 5 points out related
work whereas the concluding section 6 summarizes the results and addresses
some important open issues.

2 Agent Standards

For completeness reasons this section describes the achievements of the FIPA
in multi-agent system standards, the first implementation of these standards
— FIPA-OS — and the OMG’s results in standardizing multi-agent systems.
While FIPA focusses on interoperability of agents and multi-agent systems
through standard interfaces on the level of agent communication, the MASIF
standard focusses on interoperability on the agent system level. Agent to
agent communication has not been specified by the OMG.

2.1 The FIPA Standard and FIPA-OS

FIPA (http://www.fipa.org/) was founded in 1996 with the goal to produce
standards for heterogenous and interoperable Agents and Multi-Agent Sys-
tems. The specifications of the FIPA Standard are build through input and
collaboration of FIPA’s membership that currently consists of about 60 mem-
bers. Since 1996 FIPA has produced over 90 specifications and about 25 of
them have been approved by FIPA’s members to be standards. A FIPA
compliant Agent Platform (AP) provides the physical infrastructure to de-
ploy agents and implements the FIPA Agent Management Reference Model
[2]. According to this reference model an AP consists of one or more host
computers, their operating systems, agent support software, agents that are
executed on the host computers and some agent management components.
These components are:

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



2 Agent Standards

- The Agent Management System (AMS) is a mandatory component, has
supervisory control over the AP and provides White Pages Services.

- The Directory Facilitator (DF) provides Yellow Pages Services (op-
tional).

- The Message Transport Service (MTS) is the default communication
service between agents on different APs and on the same AP. It is
designed to ensure interoperability between agents on FIPA compli-
ant APs. It is provided by a so called Agent Communication Channel

(ACC) [3].

The internal design of an AP is not specified by FIPA and left to the devel-
opers of FIPA compliant APs.

Every FIPA agent is identified by an unique Agent Identifier (AID) which
consists of the agent’s name, a list of communication addresses (an URL) and
a list of resolution services for the agent’s addresses. FIPA suggests that an
agent’s name should have the form agentname@APname where the AMS of
the agent’s AP occurs in the latter.

The AMS and DF provide interfaces to de/register, search and modify
entries in their directories. In addition, the AMS provides a function to
obtain the description of an AP. Every agent created on or moved to an AP
is registered with the AMS of this AP by it’'s AID. Agents providing services
to other agents may be registered with one or more DF's by their names and
service descriptions. DF's can be searched for agents by service descriptions.
For convenience of agents and their programmers DFs can be federated with
other DFs so that an agent’s search is automatically extended to other DFs.

The standard interfaces of AMS and DF are accessible through the FIPA
Agent Communication Language (ACL), which is the most important out-
come of FIPA’s work. The ACL has a layered architecture. Every message
expressed in ACL has a so-called Communicative Act (CA) based on speech
act theory [5] as its type [4]. Every ACL-Message carries a number of pa-
rameters as sender and receiver which are filled with values for each instance
of a message [6]. The content of a message is formulated in a Content Lan-
guage (CL) (e.g. [7]) and the symbols used with that CL are defined by
an ontology. The content and the ontology are also parameters of an ACL
message. Another parameter defines which Interaction Protocol (IP) (e.g.
[8]) the message belongs to. IPs are often used and standardized patterns
of message sequences. FIPA maintains a library of 11 IPs. Additionally the
flow of messages can be tracked by a conversation identifier. FIPA specified
standard representations of its ACL (e.g. in XML [9]). For the transport be-
tween agents (on the same or different APs) ACL messages are encapsulated

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



2 Agent Standards

in envelopes. The representation of an envelope is also standardized in [10],
[11]. The messages are sent by the ACC of an AP which can use one of three
Message Transport Protocols (MTPs) to send ACL messages to a remote
agent on another FIPA compliant AP. These MTPs are HT'TP [12], IIOP
[13] and WAP [14]. The MTP for message transport between agents on the
same AP is — as other internal design matters — not defined by FIPA. Every
FIPA compliant AP has to implement at least one standard MTP, one stan-
dard envelope representation and one standard ACL representation. These
specifications ensure interoperability between FIPA compliant APs if the as-
sumptions made above are fulfilled. For interoperability between agents they
have to implement mechanisms to deal with the same CLs and ontologies.

The most important implementation of the FIPA specifications has been
carried out by FIPA-Open Source (FIPA-OS) that is developed and main-
tained by emorphia (http://www.emorphia.com/), one of FIPA’s members
(FIPA-OS is implemented in Java and currently available in version 2.2.0
under an open source license from http://fipa-os.sourceforge.net/). One can
implement own agents by extending a class (FIPAOSAgent) called the agent
shell [15]. With every agent a Conversation Manager (CM), a Task Manager
(TM) and a set of tasks are associated. The CM keeps track of the agent’s
conversations with other agents. Every agent can execute tasks in parallel.
These tasks are managed and executed by the TM. From within tasks ACL-
messages can be sent and received. Therefore tasks are associated with one
or more conversations the ACL messages belong to. The TM makes sure that
the incoming ACL messages received by the CM are delivered to the correct
task(s) via callback methods.

The ACL messages are sent via an MTS that implements a CORBA and
a HTTP MTP for communication with agents residing on remote platforms.
As MTP for AP internal communication Java Remote Method Invocation
(RMI) is used. There is no support for mobile agents in FIPA-OS. In FIPA
specifications mobility of agents is only considered for the agent life cycle [2]
and in a deprecated specification that suggests an integration with OMG’s
Mobile Agent System Interoperability Facility (MASIF) standard.

2.2 The OMG MASIF-Standard for Mobile Agent Sys-
tems

The OMG MASIF standard for mobile agent systems [16] is based on OMGs
famous Common Object Request Broker Architecture (CORBA). Agent man-
agement, agent transfer, agent and agent system names as well as agent sys-
tem type and location syntax have been standardized by the OMG. For this

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



2 Agent Standards

purpose agents are divided into stationary and mobile agents. Agent Systems
provide an execution environment for these agents and the services to transfer
mobile agents. Agents and agent systems are associated with an Authority.
Agents reside in execution environments of agent systems called places. An
agent system of one authority is situated with other agent systems of the
same authority in a region that is regarded as a security domain. Agents and
agent systems of different regions can be interconnected via agent systems —
called Region Access Point — of these regions that are exposed to the outside
world. Every region owns a naming service or shares one with another region.
Agent systems are interconnected via a Communication Infrastructure that
is implemented using CORBA.

With MAFFinder and MAFAgentSystem, two standard CORBA interfaces
and data structures for agent systems have been specified. MAFFinder has
to be implemented by a region’s naming service and provides methods for
finding, de/registering agents, places and agent systems. The interface MAFA-
gentSystem is implemented by every MASIF compliant agent system and
provides methods for creation, transfer and querying information about the
agent system.

MASIF specifies how an agent’s state and code can travel from one agent
system to another using methods of the MAFAgentSystem interface. A mobile
agent is associated with a Codebase from where his code can be loaded. A
mobile agent requests its migration from the agent system it currently resides
on via an internal API. For this purpose the destination agent system and
place are announced by the agent. Then the agent is suspended, the pieces
of the agent’s state to be transferred are identified, the agent code and state
are serialized and encoded for the chosen transport protocol by the agent
system. Afterwards the agent is transferred. The destination agent system
has to determine whether it can interpret the agent or not and, dependent on
that decision, accept the agent. After acceptance, the agent is decoded and
deserialized, instantiated, its state is restored and its execution can resume.
Agent transfer may only take place between agent systems of the same agent
system type, as every agent platform provides a different execution environ-
ment. Different strategies to transfer an agent’s code are considered:

1. Automatic transfer of all possible classes.

2. Automatic transfer of the agent class only, other classes are transferred
on demand.

3. Combinations of the first and second strategy.

Agent systems can maintain a cache of agents’ code so that the code needs
not to be transferred every time an agent is transferred.

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



3 Integration of FIPA and MASIF

One important additional concern with mobile agents is security which is
addressed by MASIF, too. When agents are transfered or created from re-
mote clients, the clients and the involved agent systems are mutually authen-
ticated automatically. When an agent from one agent system communicates
with an agent on another agent system both agent systems try to authen-
ticate the remote agent and remote agent system to apply the appropriate
security policies. Agents and agent systems have to be able to control access
to their services based on other agents’ and agent systems’ permissions Ac-
cording to the MASIF specification the security needs are met by a CORBA
compliant secure ORB with Security Level 2. Not all ORBs support this
security level.

3 Integration of FIPA and MASIF

Information provided on the agent communication level by FIPA is also pro-
vided on the agent system level by MASIF, e.g. agent lookup, agent regis-
tering etc. In order to integrate the standards, the concepts of FIPA have to
be mapped onto the concepts of MASIF and the other way round. For this
purpose the issues raised in section 1 are discussed and solved step by step.

1. Place, agent and AP naming

2. Mapping of infrastructure of MASIF onto FIPA’s infrastructure and
the other way round.

3. How to implement agent transfer.

4. Security concerns.

3.1 Naming Issues

Place, agent and AP names have to be unique to identify agents. This must
also be true when agents are transferred from their home AP to another AP.

For places here the namingscheme placename-place@ap is suggested with
placename and ap replaced with the name of the corresponding place’s and
AP’s names. If an agent is named following the agent naming scheme sug-
gested by FIPA, uniqueness of agent names cannot be assured in the presence
of agent transfer. For agents the naming scheme suggested by FIPA is ap-
plied and extended for mobile agents as follows. When an agent with name
agenta@apl is transferred from AP apl to another AP ap2 its name should
change to agent@ap2 as he from now executes under control of the AMS of
ap2. If there is already an agent running on ap2 with name agenta®@ap2

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



3 Integration of FIPA and MASIF

there is a conflict. So an agent should be renamed by a predefined scheme
when it arrives at a new AP that it is not its home AP for the first time.
The scheme suggested here is for our example of agent a when it arrives at
ap2: agenta-from-apl@ap2. The first part of this name will not undergo
any further changes when the agent arrives on other APs. In the case the
agent is transferred back to its home AP its original name should be restored.
In the meantime the AMS of its home AP must ensure that no further agent
registers with the same name. In addition an agent being transferred from
one AP to another must be forced to deregister with the AMS of the AP
he moves from and to modify its service description (if any) registered with
the DF as its addresses for ACL message transport change after agent trans-
fer. An AP which is reachable via the internet is named based on the name
of the host that is exposed to the internet (most likely the host where the
MAFAgentSystemn is running). This naming scheme should also be applied in
LANS.

3.2 Integration of Infrastructures

The infrastructures described in MASIF and FIPA do not exactly fit to each
other. The concepts of agent system and AP as well as the platform services,
e.g. DF/MAFFinder, have to be integrated. As there is no concept of region
in FIPA, a way that is compliant to FIPA and MASIF, has to be found
to implement it. Because there is also no notion for place in FIPA and no
equivalent in the Agent Management Reference Model, it must be thought of
ways for agents to find and reason about places. This should also be specified
on the ACL communication level (not only on the agent system level). Also
a FIPA compliant way to register the Places with the AMS and DF must
be found so that they can be looked up by agents. The concerns of the
standards’ communication infrastructures have to be addressed as well.

The notion of agent system in MASIF is compatible with the concept of
the AP in FIPA. So the interface MAFAgentSystem is mapped onto the AMS
that has supervisory control over an AP [17]. Regarding the DF the question
about the region in MASIF and MAFFinder interface is raised. Theoretically
the MAFFinder can be mapped onto a DF (as suggested in [17]), but in this
case the concept of a Region is not taken into consideration as there can be
more than one DF in one Region that consists of a number of APs. This can
be solved by choosing one dedicated DF that is federated with all DFs in
the Region and is accessible through the MAFFinder interface on the agent
system level. As not all agents are registered with the DF the agent system
has to register agents with the MAFFinder in order to enable MAFFinder to
supply information about agents that provide no services and therefore are

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



3 Integration of FIPA and MASIF

not registered with the DF.

A FIPA compliant AP can comprise one or more machines so that every
machine is mapped onto a place. Each Place is treated as a special agent that
can execute other agents and provides a service-description. This description
contains information about its execution environment, a description of the
resources available from it and a list of agents executed within it. The de-
scription is registered with the DF of an AP and allows agents to search for,
migrate to and reason about places with special resources. If an agent cannot
migrate to a place, e.g. the execution environment is not compatible, it still
has the option to contact an agent residing in the desired place which is able
to accomplish the task to be carried out there.

To be MASIF compliant, an AP has to provide its interfaces on the agent
system level via CORBA as its CI. The CI for the agents is independent
from the agent system level CI namely the ACC. As there must be CORBA
available on the agent system level the standard MTP of an AP is IIOP.
Regarding the security mechanisms of the CI described in the MASIF stan-
dard these mechanisms should be generalized so that they are independent
of an ORB implementation and could be applied to other Cls e.g. via HTTP
as some FIPA APs provide an HTTP interface to the ACC and the HTTP
infrastructure could also be used to transfer agents and access the interfaces
on the agent system level. This could be useful in environments where no
CORBA infrastructure is available.

3.3 Agent Tranfer for Mobility

There are two principal possibilities to implement agent transfer within the
given settings:

1. Transfer agents and their code as content of ACL messages.
2. Transfer agents using low level APIs and de/serialization processes.

The first possibility means to transfer an agent by sending its serialized state
formulated in a CL as content of an ACL message. This can be done in two
ways. For both ways an universal Transfer Ontology must be standardized to
facilitate transfer between APs of different vendors. Then a process how an
agent’s data state can be de/serialized from/to a representation in a CL with
this Migration Ontology must be standardized. For the first way additionally
a standardized high level interpreted Agent Programming Language (APL)
implemented on many soft- and hardware platforms must be available. So the
agent’s script would be independent from the execution environment. Then
the agent’s state and script could be sent via ACL messages. The second

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



3 Integration of FIPA and MASIF

way can be applied, if no APL is available. So the sources, e.g. Java, of the
agent’s classes are included in an ACL message, but this would require the
agent’s code to be compiled at the receiving agent system.

The second possibility means to use APIs on the agent system level and
de/serialization processes of existing programming languages, e.g. Java, to
transfer agents. The first way of the first possibility would be the most inter-
operable way to transfer agents. The second way is as interoperable as the
second possibility, because an agent needs a certain execution environment,
e.g. FIPA-OS. Hence, this method would not increase the interoperability of
agent transfer compared with the second possibility. In order to avoid the
need to specify a migration ontology, a de/serialization process and an APL —
that would not be a standard — for now it is sufficient to use low level APIs on
the agent system level and the de/serialization mechanisms of programming
languages like Java for agent transfer.

An additonal problem with agent transfer occurs when an agent migrates
during ongoing conversations with other agents. Then these agents might
not recognize that the agent has moved and may try to send messages to the
agent’s outdated address. For this reason messages belonging to conversa-
tions not finished yet are forwarded to the new location of the agent by a
proxy that lives until all conversations have ended. Agents that want to com-
municate with a mobile agent only have to look up its addresses before they
initiate a new conversation. The protocol for migration proceeds as follows.
A mobile agent requests its migration from the AP it currently resides on via
an internal API and anounces the destination agent system and place. The
agent is suspended, deregistered with the AMS (The agent’s programmer has
to care of the registration with the DF) and, the pieces of the agent’s state
to be transferred are identified, the agent’s code and state are serialized and
encoded for the chosen transport protocol by the AP. If necessary a proxy
is instantiated that forwards the messages of ongoing conversations or stores
them until it knows the agent’s new address. The agent is transferred. The
destination AP has to determine if it can interpret the agent. If it can, it
accepts the agent, the agent is decoded and deserialized, instantiated, its
state restored, and registered with the local AMS. Afterwards execution is
resumed and the agent’s new address is delivered to the proxy if one was
created. For the transfer of agent code the mechanisms described by MASIF
can be applied.

Another matter is that an AP consists of one or more machines repre-
sented by places. Therefore agents can be transferred between different ma-
chines that constitute one and the same AP. Agent transfer can be divided
into AP internal and external transfer. Internal design is left open to AP
Programmers (by MASIF and FIPA) and is not an issue here. For external

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



4 TImplementation of a FIPA and MASIF compliant Agent Platform

agent transfer the CI of an agent system is used.

3.4 Security

Up to now, security mechanisms have been elaborated by FIPA only in a
preliminary specification [18]. The security mechanisms described by MASIF
can only be applied in CORBA environments that have a secure ORB that
implements CSI level 2. They have to be elaborated so that they can also
be applied in other environments. To this account interoperability regarding
security issues is not solved with our current platform but has been left to
future work.

4 Implementation of a FIPA and M ASIF com-
pliant Agent Platform

For the implementation of our concepts, FIPA-OS was chosen to be a good
basis to be extended as it is open source, implements the latest FIPA specifi-
cations as soon as possible and has a component-oriented design. The goals
for the extension are to re-use as many components of FIPA-OS as possi-
ble and to decouple our implementation of the MASIF extensions from the
FIPA-OS internals in order to facilitate the combination with future FIPA-
OS releases. For the latter it has been managed to implement all extensions
with no change of any line of code of the original FIPA-OS 2.2.0 release.

4.1 Agent Transfer Infrastructure

For agents being transferred an infrastructure must be created that enables
agents to move from one host to another. On every machine (place) a ser-
vice that can receive and instantiate agents is run. This Receiver-Service
receives an agent’s code and is able to instantiate the agent and resume its
execution. For internal agent transfer of an AP this service is implemented
via Java RMI. For external agent transfer the receive_agent method of the
MAFAgentSystem interface is used to deliver agents. An agent is instantiated
(as described below) at that location if the MAFAgentSystem service runs on
the host where the desired Place of the transferred agent is located. Other-
wise the agent is delivered to the desired place via the internal agent transfer
infrastructure over RMI to the Receiver-Service on the corresponding host.
The Receiver-Service receives the data state of an agent serialized by the Java
serialization mechanism with help of an java.io.ObjectOutputStream.

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



4 TImplementation of a FIPA and MASIF compliant Agent Platform

Agent level

Agentsystem

p-|

MAE-
Finder Agentsystem (external)

External commurnication infrastructure

Figure 1: Overall System Architecture

When the agent is instantiated the appropriate classes must be loaded into
the Java Virtual Machine (JVM). For this purpose Java uses ClassLoaders.
As mobile agents classes may not be available locally, a ClassLoader for mo-
bile agents’ classes in a MASIF environment has to be able to load them from
remote hosts via CORBA. Therefore a custom AgentClassLoader is imple-
mented that is capable of loading classes through the fetch_class method of
MAFAgentSystem. Therefore, a specific AgentClassLoader is provided with
the address (IOR) of the codebase for the mobile agent whose transfer is
currently processed. AgentClassLoader is used by an AgentInputStream
class that is derived from the java.io.0ObjectInputStream distributed with
Java, but uses the AgentClassLoader to load classes for mobile agents.

The location from where the classes can be loaded is called codebase. The
codebase of an agent can be accessed by other agent systems through the
fetch_class method of MAFAgentSystem. The Codebase is distributed over
the hosts of an AP, so that the classes of an agent must only be deployed
to the place (that means its classes must be in the classpath) where it is
instantiated the first time. As address of its codebase the MAFAgentSystem’s
IOR is used because the codebase is accessible through it. As loading classes
over a network every time an agent arrives at a place consumes bandwith
each host holds a cache of agent classes. When an agent arrives the first

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



4 TImplementation of a FIPA and MASIF compliant Agent Platform

time, its classes are written to this cache.

While a JVM is running the classes are present in the cache of the JVM,
but when it is shut down, the classes of mobile agents are lost. So they
are written to a directory in the classpath of the JVM from where they can
be loaded again. An additional issue is assuring timeliness for mobile agent
classes. The code of an agent can undergo changes between two times he
arrives at one place. A mechanism to avoid instantiating the agent with old
classes can be based on accossiating version ids of its classes with a running
agent.

The services described above are all integrated into one component Place
that represents a place. The Place provides a GUI from where mobile agents
and stationary agents (the original FIPAOSAgent) are started by the user. So
the place knows about all started agents and is enabled to notify the agent
aystem which agents are executed on it. This solution to register agents was
choosen, as every FIPAOSAgent can be started in a single JVM and no mech-
anisms to register them with a Place have been implemented. Implementing
them would require to change original FIPA-OS classes. The places register
themselves with MAFFinder/DF via ACL-Messages when they are started up
and notify it when new agents are executed. So that these information can
be obtained through the methods lookup_agent and lookup_place on the
agent system level and agents can find Places using ACL messages. This is
done through the ACL interface of a DF following the naming scheme. With
the DF a place-description (a special service-description) is registered that
provides information about the execution environment present at a Place and
a list of agents executed at a place.

4.2 Implementation of MAFAgentSystem and MAFFinder

The MAFAgentSystem interface is implemented by a component called AgentSys-
tem that wraps the AMS of FIPA-OS. For this purpose this component uses
the ACL and MTS/MTP components distributed with FIPA-OS to retrieve
information from the AMS like lists of agents or places that can be requested
through the methods 1ist_all_places and 1ist_all_agents_of_authority.
The methods suspend_agent and resume_agent have not been implemented
yet as the FIPA-OS API has no methods to suspend and resume a FI-
PAOSAgent. So not the whole agent life cycle proposed by FIPA and MASIF
is implemented. To provide the codebase for an agent, AgentSystem is pro-
vided with a list of classes available from each Place. For this purpose the
Places send a list of classes to the Agent System when they are started up.
When the AgentSysten is started up, the address (IOR) of the MAFFinder
service, where the AgentSystem registers itself, its agents and places are sup-

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



4 TImplementation of a FIPA and MASIF compliant Agent Platform

plied. As there is no notification from the AMS to AgentSystem when a new
agent is registered this is done transparently by the Place where an agent is
started. When a new agent is registered with AgentSystem, the AgentSys-
tem registers it with MAFFinder automatically. Hence, agents that registered
no service-description with an DF still can be looked up via MAFFinder.

The MAFFinder interface is implemented by a component called Region.
This is implemented in an analog manner to MAFAgentSystem and wraps the
dedicated DF in the Region. When an AgentSystem is registered with the
Region the dedicated DF is forced to register with the DF of the AgentSystem
that just registered. When the method lookup_agent is called, the Region
first searches the DF for the agent. For this purpose the property list from
the supplied AgentProfile is converted to a FIPA service-description that
is used to query the DF with the appropriate FIPA ACL message. If this list
is empty the local information about registered agents is used.

4.3 Agent Components

The original FIPAOSAgent cannot be transferred, as its components - the TM,
CM and its Tasks - are not serializable. Moreover, their implementation con-
cerns that are important when an agent wants to travel are not addressed, so
a specific agent that is capable of being transferred has to be implemented.
For this purposes the patterns used for the original FIPAOSAgent are adapted
for the MobileFIPAOSAgent. This agent is like the original one associated
with a TM, CM and a set of Tasks that are transferred with their agent
when it travels to another place. These serializable components are called
MobileTaskManager, MobileConversationManager and MobileTask. The
MobileTaskManager manages the execution of the MobileTasks and the Mo-
bileConversationManager manages the conversations the agent is involved
in. An additional component — the AgentSender — serializes an MobileFI-
PAOSAgent and its components except itself when a transfer is requested by
the agent and transfers the agent to the desired place via the appropriate
protocol, i.e. RMI for internal and CORBA for external transfer.

Requests for a transfer can be made from within MobileTasks. The com-
putation of tasks happens mostly in the callback methods provided by the
task for received messages to be delivered to it and in the method that starts
a task’s execution. The tasks are executed in parallel by threads that are
hold in a pool of threads. So when a transfer is requested, the TM is notified
and all threads currently executing tasks are run to their ends but no new
execution is started. As the threads execute the callback methods of the
tasks, all tasks are halted. The MobileConversationManager is also notified
that a transfer is in progress. A Proxy is instantiated and associated with the

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



4 TImplementation of a FIPA and MASIF compliant Agent Platform

MTS to receive messages for the agent that may arrive during transfer. All
incoming messages are stored by this proxy. When all tasks are halted the
AgentSender is initialised and the agent is sent through it. The transfer is
initiated in a task by calling its migrate method. This takes the destination,
an array of serializable objects and the name of a task’s method (called reen-
try method) as parameters and has to be the last method that calls task’s
method, as it is the last statement that is executed in the task’s method.

After the transfer was successfull the task’s reentry method specified as
parameter of the migrate method is called with the array of serializable ob-
jects. This is done by the TM after the execution of tasks has been restarted
in case of a successful transfer. With the reentry method and the supplied
array of serializable objects, it is possible to have a somewhat transparent
transfer in abscence of full migration capabilities of the Java Runtime Envi-
ronment. After succesful transfer the AgentSender is notified and the new
address of the agent is supplied. Then the proxy is notified to send the
messages arrived meanwhile to the new location of the agent. After that all
remaining components of the agent including the proxy are shut down and
the agent is no longer reachable via its old address.

If the transfer fails the proxy gives the messages to the MobileConver-
sationManager that re-establishes its association with the MTS. The TM
restarts execution and calls the method to handle failed transfers of the task
that requested the transfer. This method has the same parameters as the
reentry method but its name is the name of the reentry method plus "failed”.
The reentry method and its corresponding method to handle failed transfers
have to be implemented by an agent’s programmer. As tasks are executed
in parallel a task can request a transfer while another task does. Only the
first transfer request is carried out. After transfer the task whose request
has not been satisfied, is notified via a method that has the same name and
parameters as the reentry method. Its name consists of the reentry method’s
name plus "notexecuted”. So it is left to the programmer to decide what to
do in this case.

4.4 Agent Transfer Process

When a MobileFIPAOSAgent requests a transfer, its components are pre-
pared for migration as described above and it is deregistered with the AMS.
For external transfer the AgentSender serializes the agent’s data state via a
java.io.ObjectOutputStream into a array of bytes. Then it is sent via RMI
to the AgentSystem component of the agent system, the agent’s current place
belongs to. From there it is sent to the agent system where the destination
place is located by calling the receive_agent method of that agent system’s

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



4 TImplementation of a FIPA and MASIF compliant Agent Platform

MAFAgentSystem interface. The underlying AgentSystem component tries to
send the agent’s data state via RMI to the desired place. There the agent
is re-instantiated, it’s name is changed according to the naming scheme de-
scribed in section 3.1, it is registered with the AP’s AMS, associated with
the APs MTS and its execution is resumed. To reinstantiate the agent the
AgentClassLoader is used. In detail the transfer process works as follows:

- An instance of an agent from the serialized data state is produced by
feeding it into the AgentInputStrean.

- The AgentClassLoader tries to load the appropriate classes from the
local filesystem, first.

- If this is not possible, it tries to load them from the agent’s codebase.
Therefore the AgentClassLoader is provided with the address (IOR) of
the agent’s codebase. The codebase of an agent is the agent’s home AP
and the codebase is accessed through the method fetch_class of the
home AP’s MAFAgentSystem by the AgentClassLoader. From there
the classes are loaded from the codebase that is distributed over the
places within the AP and can be obtained from the place components
that represent the places. The AgentSystem looks up the Place from
where the class is available in its list of classes and fetches the class from
there. Then the receiving AgentSysten is notified by the Place about
the agents new address and reports it to the sending AgentSystem. This
informs the AgentSender via RMI about the new address and then the
messages are sent to the new location as already described. Internal
transfer is carried out in an similar manner but the AgentSender sends
the agent to the desired Place without involving the AgentSystem.

- If the classes are not available through these techniques, an exception
to indicate the failed transfer is thrown back to the AgentSender by
the involved Components (AgentSystem, Place etc.). Afterwards the
agent is re-registered with the AMS and its execution is resumed at its
current place.

The process has to be refined if the agent system that provides an agent’s
codebase is not reachable. An additional problem has to be solved if code
is locally available but out of date or due to a wrong version. As this could
lead to unpredictable behaviour of mobile agents, this issue has to be solved
when determining the availability of code in the steps described above.

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



6 Conclusion

5 Related Work

Another MASIF and FIPA compliant AP called Grasshopper ! has already
been released in 2000 by GMD Fokus. For this platform two open source
addons — one for MASIF and one for FIPA compliance — are available. But
the approach to achieve this compliance has been started from the view of
MASIF as Grasshopper was only MASIF compliant first and the FIPA ad-
don has been released later. This addon complies to the FIPA 97 standards.
At the time we evaluated the platform, the MASIF interfaces were not fully
implemented in the MASIF Addon. For example it is not possible to use the
MAFFinder for searching agents by their properties. Moreover, a Grasshop-
per agent system can only comprise one host. All places of an agent system
are co-located on a single machine. So load balancing within one agent system
is not possible. The approach described here is to focus on both standards
to benefit from opportunities of both standards.

6 Conclusion

Interoperability on the agent system level is desirable for administrators re-
sponsible for many APs of different vendors. This paper shows how the
standards of FIPA and OMG for multi-agent systems can be combined con-
ceptionally and practically based on an open source AP. In this way inter-
operability on the agent communication level as well as on the agent system
level are made available.

Although very important, security in multi-agent systems and for mo-
bile agents remains an open issue for our future work because still FIPA has
produced no specification that can be regarded as a standard and the sug-
gestions of the OMG in its MASIF Standard can only be applied to some
environments where a secure implementation of an ORB is available. There-
fore these mechanisms have to be generalized so that they can be used in
every environment. In some environments it may be required to have a HTTP
interface on the agent system level as it is the case for the FIPA MTS that can
use HTTP as a MTP. For the implementation security mechanisms are also
an open issue and have to be developed. Mechansims to ensure timeliness of
mobile agents’ code and to obtain mobile agents’ code when the codebase is
not reachable have to be implemented.

Thttp://www.grasshopper.de

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



References

References

[1] N.R. Jennings (Southampton 2000) "On Agent-Based Software Engineer-
ing” Artificial Intelligence, 117 (2) 277-296.

[2] Foundation for Intelligent Physical Agents, FIPA Agent Management
Specification, Document No. 00023 (Geneva: FIPA, 2002).

[3] Foundation for Intelligent Physical Agents, FIPA Agent Message Trans-
port Service Specification, Document No. 00067 (Geneva: FIPA, 2002).

[4] Foundation for Intelligent Physical Agents, FIPA Communicative Act
Library Specification, Document No. 00037 (Geneva: FIPA, 2002).

[5] J.R. Searle, Speech Acts (Cambridge: University Press, 1969 ).

[6] Foundation for Intelligent Physical Agents, FIPA ACL Message Structure
Specification, Document No. 00061 (Geneva: FIPA, 2002).

[7] Foundation for Intelligent Physical Agents, FIPA SL Content Language
Specification, Document No. 00008 (Geneva: FIPA, 2002).

[8] Foundation for Intelligent Physical Agents, FIPA Request Interaction
Protocol Specification, Document No. 00026 (Geneva: FIPA, 2002).

[9] Foundation for Intelligent Physical Agents, FIPA ACL Message Repre-
sentation in XML Specification, Document No. 00071 (Geneva: FIPA,
2002).

[10] Foundation for Intelligent Physical Agents, FIPA Agent Message Trans-
port Envelope Representation in XML Specification, Document No. 00085
(Geneva: FIPA, 2002).

[11] Foundation for Intelligent Physical Agents, FIPA Agent Message Trans-

port Envelope Representation in Bit Efficient Specification, Document
No. 00088 (Geneva: FIPA, 2002).

[12] Foundation for Intelligent Physical Agents, FIPA Agent Message Trans-
port Protocol for HTTP Specification, Document No. 00084 (Geneva:
FIPA, 2002).

[13] Foundation for Intelligent Physical Agents, FIPA Agent Message Trans-
port Protocol for IIOP Specification, Document No. 00075 (Geneva:
FIPA, 2002).

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



References

[14] Foundation for Intelligent Physical Agents, FIPA Agent Message Trans-
port Protocol for WAP Specification, Document No. 00076 (Geneva:
FIPA, 2002).

[15] emorphia, FIPA-OS Developers Guide (Harlow: emorphia, 2001).

[16] Object Management Group, Mobile Agent Facility Specification (Need-
ham: OMG, 2000).

[17] Foundation for Intelligent Physical Agents, FIPA Agent Management

Support for Mobility Specification, Document No. 00087 (Geneva: FIPA,
2002).

[18] Foundation for Intelligent Physical Agents, FIPA Policies and Domains
Specification, Document No. 00089 (Geneva: FIPA, 2001).

This is a draft of the paper published in: M.H. Hamza (Editor), Proceedings of the 7th
International Conference on Software Engineering and Applications, 2003
http://www.actapress.com/PaperInfo.aspx?PaperID=14607



