Decentralized Reputation Management for
cooperating Software Agents in open
Multi-Agent Systems

Andreas Griinert, Sebastian Hudert, Stefan Konig,
Sven Kaffille, and Guido Wirtz

Otto-Friedrich University of Bamberg
sven.kaffille|guido.wirtz@wiai.uni-bamberg.de

Abstract. Multi-Agent Systems (MAS) promise a new advance in dis-
tributed computing. In MAS autonomous software agents flexibly co-
operate, coordinate and compete to provide the desired function(s) of
such a system. If some components of a MAS fail or do not provide the
desired functionality, the system is expected to autonomously deal with
this situation. It is desirable to reduce occurrences of such situations
by selecting trustworthy cooperation partners before cooperating with
them. This becomes even more crucial in open MAS in which arbitrary
heterogeneous software agents participate. In order to monitor agent be-
havior and enable selection of trustworthy cooperation partners, trust
management services can be applied. As there is no central control in an
open MAS and it is completely distributed, these services itself have to
be distributed. This paper proposes a fully distributed reputation man-
agement service for open MAS based on peer-to-peer technology.

1 Introduction

This paper describes a fully distributed reputation management scheme to es-
tablish trust in open Multi-Agent Systems (MAS). Reputation management can
be used as a foundation for agents to select trustworthy cooperation partners.
For this purpose the paper is organized as follows. This section motivates why
distributed reputation management is necessary in open MAS and describes the
characteristics of open MAS. The second section exemplifies which requirements
reputation management for open MAS must meet, while the third section deals
with several aspects of the design of the proposed reputation management. It
describes the architecture of our reputation management scheme and because
of space limitations explains just the central protocol. Section four places our
work in the context of other related work, before the final section summarizes
the results of this paper and addresses open issues and future extensions to our
approach.

Agents seem to be the next promising paradigm in Software Engineering
for complex distributed systems. Currently there is no consensus on a definition
what an agent is, but most definitions agree that an agent has to be autonomous,

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



1. Introduction

situated in an environment , must be able to percept, react to, and change this
environment [9]. Furthermore a single agent can be reactive or a complex delib-
erative entity. A MAS is according to [9] ,,a loosely coupled network of problem
solvers that work together to solve problems that are beyond the individual
capabilities or knowledge of each problem solver”, where no global control ex-
ists, the agents are heterogeneous, and may be self-interested. In an open MAS
heterogeneous selfish agents of different developers may enter the system.

For execution of software agents and MAS, distributed runtime environments
and services are required (e.g. directory and communication services [6]). In this
paper a runtime environment providing such services is called an agent platform
(or just platform). A MAS may consist of many different platforms with different
owners. To provide an open MAS it must be possible that agent platforms on
different machines can be connected to facilitate cooperation between the agents
residing on these platforms. It must also be possible that new platforms and new
agents can enter the MAS at runtime.

Because of this dynamic nature of open MAS it is reasonable to base a MAS
on Peer-to-Peer (P2P) technologies, as these kind of systems provide mechanisms
to dynamically handle the arrival and departure of new machines in a network.
The services (e.g. discovery services) required by agents are then provided by all
the platforms that are connected within the P2P network to equally distribute
load. Moreover the whole network becomes scalable as with the arrival of new
platforms these platforms will also provide new resources to provide services.

The limited capabilities and knowledge of agents to solve problems on their
own makes cooperation necessary, which can be structured in MAS with help
of the Cooperative Problem Solving (CPS) process[13]. CPS is divided into four
phases: recognition, team formation, plan formation, and team action. As CPS
is an iterative process, this phases have not to be processed sequentially.

As it cannot be assumed, that agents are sincere, in order for CPS to be
successful in open MAS, agents must have a basis for the decision with which
agents to cooperate. This is important in the team formation phase in order
to decide which agents should be in the team as they will most likely fulfill
their assigned tasks. In phase three (plan formation) it may be helpful to have
knowledge about the reliability of agents regarding the tasks they can carry out.
In open MAS at the end of the fourth phase of CPS an additional fifth phase,
which records the experiences agents make with each other, should be carried
out.

One possibility explored in MAS research to identify and exclude agents that
behave badly is Trust Management ([5], [14]). Therefore another useful service
which should be provided by an agent platform, in such a dynamic environ-
ment is a service to manage trust among the agents involved. This service in an
open decentralized environment with no global control should also be distributed
equally among platforms constituting a MAS. On the one hand distribution of
trust management among platforms ensures that there exists no single point of
failure or a single entity that can be attacked. On the other hand it accounts for

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



2. Requirements on Reputation Management

scalability as argued above. Developing such a service is the central goal of our
work.

Trust can be used as a foundation for reasoning about with whom to interact
in situations where only partial information about the partner is available and
there is a risk that the interaction may be harmful. Trust depends on situation
and the context, in which it is validated [3]. Trust between two individuals is not
necessarily symmetric. In MAS the context, in which an agent can be trusted,
can be defined by using the role an agent plays[4].

The primary source used for building trust to someone would be a subjective
image [12] one can have of the other party. If such an image is not available, one
has to resort to other information as e.g. reputation values provided by a repu-
tation management system. Reputation management [15] facilitates estimation
of trust between agents based on a history of interactions.

Reputation management is mostly realized with help of a central trusted
entity, which stores reputation values for pairs of agents that have interacted
before. If such a central entity is present, an agent can ask it (instead of asking
all agents known by it) for all interactions, in which the agent under consideration
has been involved, and how other agents rated these interactions.

In order to make reputation interpretable and computable by software it is
often represented by numerical values (e.g. real numbers between 0 and 1). The
reputation value for a single agent is then computed with help of a so called
reputation metric [8].

Reputation information about an agent can be seen by all other agents in-
cluding the affected agent itself. Therefore the agent can estimate if other agents
may have trust in it and how it is rated compared to other agents. This will give
the agent an incentive to keep its reputation as high as possible by behaving well
in any interaction. Ratings of agents that rated others, but have already left the
system are still maintained by reputation management.

According to [12], reputation can be structured in three dimensions: individ-
ual, social, and ontological. Our approach assists the social dimension by provid-
ing a reputation management service which itself is completely distributed. The
ontological dimension can be addressed with help of the roles an agent plays,
but is not covered in this paper. In our approach each single agent is responsible
for the individual dimension on its own.

2 Requirements on Reputation Management

The reputation management service must enable agents to rate and request the
reputation of other agents. Agents must be free to leave and enter the MAS at
any time. If an agent leaves and it has gained a certain reputation, it should

! In order to provide more information about the context the commitment underlying
a cooperation and information about the environment where the cooperation takes
place may be incorporated. This has to be examined further and to be integrated in
our work in the future.

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



2. Requirements on Reputation Management

be able to maintain this reputation, and reclaim it when it reenters the system.
This must be possible at any of the distributed agent platforms.

As reputation is context-dependent it is inevitable to save reputation infor-
mation for different contexts. These contexts are provided by CPS processes that
are conducted by the agents and the role(s) agents play during these. Hence, it
is necessary to rate the agents with help of the role(s) they play during CPS.

As the MAS is distributed itself, the reputation management service of a
platform, should be distributed in a P2P-fashion. There should exist no central
global control, so that every participant of a MAS has to provide resources for
reputation management. P2P technologies also facilitate an open network, where
platforms and agents can join and leave dynamically. By distributing reputation
management in a P2P-fashion it is more likely that it scales with the number of
participating platforms and agents. In order to facilitate reputation management,
agents must be uniquely identifiable, so that they can be rated by other agents.
Therefore an identification and authentication mechanism must be available (see
3.2 for details).

In order to assure that agents can only rate others if there has been a coop-
eration (referred to as transaction in the following), the reputation management
service of a platform must keep track of transactions with help of transaction
identifiers. To ensure that agents do not request a transaction identifier without
giving a rating for the requested transaction, a protocol must ensure that rat-
ings are delivered after a transaction. Also a mechanism that motivates agents to
leave the MAS in an orderly fashion should be provided. These two mechanisms
can be realized with help of a leasing concept for subscription to the system
and transactions. This leasing mechanism must be distributed among several
platforms. It cannot be realized by the single platform, that hosts the agent for
which it manages a lease, as the platform may cooperate with the agent.

To implement these basic requirements some additional requirements have to
be imposed. A P2P scalable and load balanced overlay network that provides a
means to store reputation data and information about agent identities must be
available. For this purpose a distributed hash table (DHT)[2], with additional
mechanisms for ensuring data integrity and consistency, can be used. The idea
is to use the structure of the DHT to control which platform is responsible for
which part of the reputation data. Additionally, no single platform should be
responsible for storing a specific chunk of data, as it cannot only manipulate,
but also remove data. Therefore reputation data should be distributed among
more than one platform.

Hence trustworthiness of platforms themselves has to be tracked with help
of a platform reputation. This requires reputation management on the level of
agent platforms to make sure that only trustworthy platforms participate in the
P2P network. A platform has to be regarded as being trustworthy if it adheres
to the protocols required for the reputation management system to function
correctly.

Mechanisms must be developed that provide identification and authentica-
tion based on well-understood cryptographic concepts. Furthermore mechanisms

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



3. Decentralized reputation management design

to handle agent arrival and departure, where agents provide existing reputation
data concerning themselves must be provided. These mechanisms have to ensure
validity of the provided data as well. All these mechanisms require that platforms
can communicate with each other in order to coordinate their activities. The in-
tegrity and reliability of this communication must be secured. To meet these
requirements the architecture described in the next section has been developed
as a plug-in for existing agent platforms to provide reputation management.

3 Decentralized reputation management design

3.1 Architecture

The plug-in is to be used as a basic service of agent platforms. Thus, its functions
are invoked by agent platforms or directly by agents running on that platform
via a single interface of the Trust Service. By applying the facade pattern
here, the complexity of the application can be encapsulated within the plug-in
and therefore is not visible to the platform, the agents or their programmers.
The reputation management plug-in consists of four different layers. Each layer

= TrustService

Layer 3

=] ReputationService =] SecurityService ] PlatformSerivce =] LeaseService
= ]CommunicationService =] DataService
Layer 1.
“]Sockets ZDHT

Layer O

Fig. 1. Architecture of reputation management service.

performs different kinds of tasks and provides its functionality to the layers above
via an interface. The basic layer 0 consists of two different components. One
is a DHT, used to store relevant data, such as information about agents and
platforms and reputation data. And the other is a socket-based communication
component for direct communication between different platforms.

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



3. Decentralized reputation management design

Layer 1 abstracts from the technical basis of layer 0. The Communication
Service offers means to communicate transparently with other platforms. In or-
der to prevent denial of service attacks or unintentional communication requests
from platforms outside the network, the Communication Service is also respon-
sible for communication security issues, e. g. authentication and authorization.
The Data Service provides operations to store data in and retrieve data from
the underlying DHT. This abstraction grants the possibility to replace the em-
ployed implementation of DHT. The Data Service is also responsible to repli-
cate data within the DHT to facilitate consistency checks. Within the structured
overlay network of the DHT each platform is responsible for certain data. The
responsibility is determined with help of identifiers associated with data (e.g.
identification data of agents/platforms, ratings of agents).

The following services, arranged on layer 2, implement the core logic for
our reputation management. The Reputation Service conducts the process of
rating agents and agent platforms. i.e. the service calculates ratings for agents
and agent platforms using a given rating metric and a reputation-value represen-
tation. The ratings are based on data retrieved with help of the Data Service.
Neither the rating metric nor the rating representation is hard-wired, but given
as a parameter when setting up the system (strategy pattern). Thus, it is possible
to use different kinds of rating metrics and rating representations, respectively.
This concept allows flexible use of the plug-in in a wide range of scenarios.
The metric and reputation value representation used has to be provided when a
MAS is created and is the same for all platforms contributing to the MAS. The
Reputation Service also creates so-called tickets for transactions, that must
be signed by all agents participating in a cooperation.

The Security Service provides services to secure communication between
platforms and data storage in the DHT. This is done utilizing the techniques
of signing and ciphering data using symmetric and asymmetric algorithms. The
service provides a platform and each agent running on it with a private? and
a public key. Data stored in the DHT by a participant of the system (agent or
platform) has to be signed to ensure integrity. In some cases a second signature
from another platform is required to guarantee data integrity. The socket com-
munication between platforms is secured analogously to the Pretty Good Privacy
protocol [16]. In order to do so, a means to create temporary session keys for
ciphering the communication between different agent platforms is provided. The
Security Service also validates signatures and deciphers data.

In order to enter a network, an agent platform invokes the Platform Service,
which also resides on layer two. The service is used to enter an existing network,
create a new network or to leave a network. Moreover, this service addresses data
consistency in the DHT by conducting consistency checks. Though platforms are
not allowed to store data in the DHT without consent (by signature) of another
platform, data might be removed by a platform. In consequence, a platform hold-
ing incomplete data will be identified and rewarded with an appropriate rating

2 How private data of agents and platforms is being secured is the responsibility of
the agents and platforms themselves.

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



3. Decentralized reputation management design

by the Platform Service. Platforms with very low reputations are finally ex-
cluded from the network. Exclusion is implemented with help of the structure
of the DHT, when trustworthy platforms remove untrustworthy platforms from
their routing tables.

It is not possible for the plug-in to force agents or platforms to use the logout
function to leave the network. Thus, it cannot always be determined if an agent
is still running. For this purpose and to motivate agents to return the ticket, a
Lease Service is introduced. A corresponding lease exists for each agent logging
into the plug-in and for each requested ticket (and therefore for each intended
transaction). If these leases are not renewed (or ticket handed back respectively)
in time, expiration of a lease will result in a bad rating for the corresponding
agent. Thus agents leaving without notifying the system will suffer constant
downgrading of their reputation values and therefore should be motivated to
sign off properly.

Finally layer 3 consists of the Trust Service providing a uniform interface
for the whole plug-in.

3.2 Attacks and counter measures

Attacks on the reputation management system can be categorized in attacks by
platforms and attacks by agents. These attacks and appropriate counter measures
are discussed in the following.

A platform does not save or deletes reputation data of an agent or manipu-
lates existing reputation data of an agent. A platform can also create fake reputa-
tion data for an agent. The whole consistency check concept is solely introduced
to reveal platform behaviors like these. Whenever one of them is discovered, the
corresponding platform will get a bad rating and, if it continues acting incor-
rectly, is excluded from the network.

A platform tries to make reputation data unavailable by flooding other plat-
forms with unnecessary requests (Denial of Service). The first request to a run-
ning platform arrives at a Communication Service. As a general policy, all re-
quests will be discarded, if the Communication Service identifies them as part
of a Denial of Service attack by using a simple request count.

A platform that has been identified as mot-trustworthy, as it tried to per-
form one or more of the attacks described above, is still or again trying to par-
ticipate in reputation management. Participation in the network can occur in
two ways: Request-response communication via the Communication Service and
saving data in the DHT via the Data Service. The former is handled by the
Communication Service of the receiving platform, which will block all requests
from non-trustworthy platforms. The latter is prohibited by a mechanism in the
DHT, which removes non-trustworthy platforms from the routing tables and
only provides trustworthy platforms with access to the DHT for data storage
and update.

An agent pretends to be trustworthy for a couple of transactions to create
a good reputation value and then changes its behavior to exploit others. All
ratings are saved, latest rating first, in priority queues. To calculate the overall

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



3. Decentralized reputation management design

reputation value a formula like exponential smoothing can be used with stronger
weights for newer ratings [11]. Thus, this attack can be averted because the
influence of the initial good ratings will diminish over time. This depends on the
metric employed, which as described above can be exchanged and adapted to
the application domain as needed.

Agents rate each other based on a faked transaction. This attack can not be
prevented completely since a plug-in cannot ensure, that a transaction is really
taking place. It is only possible to verify ratings by checking the signatures of
the ticket, the valuations and the distributed ticket lease. An agent might not
fetch a ticket before starting cooperative work so it cannot be rated afterwards.
However, other agents can refuse to cooperate if no ticket was passed around.

An agent cooperates with other agents to get a high reputation value. To
impair the unmeant effects of faked ratings, only one rating per agent pair (rated
and rating agent) and role is used to calculate the reputation value. Thus, there
are no serious effects on the overall reputation of an agent when two agents give
faked (high or low) ratings to each other.

An agent rates another agent with a bad reputation value without reason. This
attack subsumes two cases: The first one - the ticket of a packet is not signed
by all agents involved - is completely prevented. If such a packet comes back
to a platform, it is ignored, because not all agents rated in this structure have
signed the ticket. The second case occurs if an agent signs a ticket and is rated
poorly although it has done its job well. This problem is again out of range of the
plug-in, but is also impaired like described in the attack above (faked ratings).

An agent leaves because of a bad reputation and creates a new identity to get
rid of the bad reputation. When leaving the system, an agent takes his cumulated
reputation data with it. Therefore it can, in case the reputation is very bad, be
tempted to come back with a new ID, which is possible since no other agent or
platform would recognize this identity change. To handle this possible attack,
every agent registering to the plug-in initially receives a neutral value, not a null
value. Thus, every other participant requesting the reputation of this agent can
decide individually how to treat such a "new” agent. The agent can also keep
its ID and just come back without its reputation data. In this case the lease
mechanism will ensure that the agent’s reputation will be very low when the
agent returns after a certain timespan. Hence it will always be disadvantageous
to come back with the old ID but without the latest reputation data structure. In
case the registering agent comes back with a reputation data structure belonging
to another agent, even if it took over the ID of the other agent ID, it would not be
able to log in because of the invalid signatures on the reputation data structure
(the returning agent has to sign the reputation data). If the agent also got hold of
the other agents private key there is no way to prevent the agent from registering
correctly because, the platform cannot proof the identity of the agent. It seems
to them that the correct agent registers again. Finally an agent might leave the
system once it has a very good reputation. Afterwards it might use this good
reputation each time it logs into the system again. Thus, it could behave harmful,
get a low reputation, log out and then log in with its high reputation again. To

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



3. Decentralized reputation management design

avoid this, the up-to-date reputation data, given out to every agent, is stored in
a queue until the agent returns to enable reputation comparison. Thus, an agent
can only register with its up-to-date reputation data structure.

Regardless of how good a reputation management is guarded against attacks,
the system cannot fulfill its task if the participating entities are not identified
properly. Hence, there must be means to ensure, that at any time any partici-
pating entity can be identified unambiguously. In the presented system, this is
realized by creating a unique identifier for each participant, so-called platform
identifier and agent identifier which are signed by the participant itself
and another network entity to forestall unauthorized identity changes.

If an agent platform wishes to login into an existing network, it first creates
a platform identifier which contains the unique identifier of the platform,
its public key and its network address. The object is then signed with the pri-
vate key of the platform and sent to a trusted platform which is already part
of the network. That platform also uses its private key to sign the platform
identifier and stores it within the DHT. In case a platform is the very first
platform and thus is creating a new network, there is no other platform to sign
the first platform identifier a second time. But as soon as a second platform
joins the network, this is made up for.

A similar procedure is performed if an agent wants to join an existing net-
work. However, the process is slightly more complicated since an agent can as-
sume different roles during its life, which are recorded within the agent valuation.
The agent valuation must not be signed itself, but contains a collection of the
current roles of an agent, associated with signed ratings, as well as the agent
identifier.

The important principle to note is, that no network entity can prove its
identity on its own, but always needs a second trusted entity to testify.

3.3 Rating protocol

The most crucial part of reputation management is how ratings are made. Our
rating protocol is described in the following.

Given the case, that an agent wants to cooperate with other agents and
intends to rate all agents in the role(s) executed by them during the cooperation,
the following procedure is executed:

1. The agent that initializes the cooperation (agent I in the following) requests
a new ticket from its platform and states an expected duration of the
intented cooperative work and its identifier. The ticket is created and signed
by the platform, signed by another trusted platform, and then returned to
the requesting agent. The expected duration and the identifier are stored
within the ticket for later use.

2. Agent I passes around the ticket to all agents participating in the cooperative
work. This takes place during the CPS process in the team formation phase
after the joint commitment[13] has been established. Each agent signs the
ticket and thus signals readiness for cooperation and adherence to the joint

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



4. Related Work

commitment. Further it adds a time stamp (of its local time). This time
stamp allows ordering the transactions without requiring a global time.

3. After all relevant agents signed the ticket, agent I requests a packet from
its platform. The agent therefore passes the signed ticket to the platform,
which checks if agent I is part of the reputation network and if the ticket
is valid. If both checks return satisfactorily, the platform requests ticket
leases from platforms that are also responsible for storage of data about
Agent I, (called platforms L in the following) for the duration stored within
the ticket. If these leases are returned, the platform creates a packet, i.e.
a data structure composed out of the given ticket and an empty collection
where rating values can be entered later. The packet is then returned to
agent 1.

4. The agents plan their joint activity (plan formation) and afterwards the
cooperative work takes place (team action).

5. After the cooperation has finished, agent I passes around the packet to all
participating agents, which store their rating values® for each other in the
packet. Every agent has to sign its ratings to ensure traceability of who gave
which rating to whom and data integrity.

6. After all relevant agents have stored their rating values, the packet is given
to a platform. The platform then asks platforms L, whether the packet is
still valid, which is determined by looking at the corresponding ticket leases.
If the packet is still valid, each rating value is checked for a proper signature
and if signed properly, stored within the DHT.

The information stored by the reputation management system can be considered
during the team formation and plan formation phase of CPS. In the former
phase the agent can use the ratings, a potential team member received earlier,
to estimate if the agent is cooperative at all. In the latter it can be estimated
to what extend an agent is able, disposed, and intending ([5]) to execute its
assigned role(s) during CPS if it has been rated in that role(s) by other agents
before.

A prototype implementation of our reputation management system as de-
scribed in this section has been realized in Java. As DHT a Java implementation
of chord[10] has been employed and extended with concepts to support our rep-
utation management service (e.g. the join protocol was changed). For a more
detailed description of our implementation refer to [7].

4 Related Work

There are two approaches we see in close relation to our approach. The first
approach is described in [1]. Instead of Chord it uses the decentralized storage
method P-Grid. In this approach only information on dishonest interactions is
considered as relevant and the result of a reputation calculation yields only a

3 The type of values and their semantics rely on the concrete reputation metric and
values employed for reputation management.

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



5. Conclusion

result that indicates if an agent is untrustworthy (0) or trustworthy (1). In our
system all interactions are considered relevant to be able to get a more concise
impression of agent behavior. In our approach the metric to calculate reputation
of an agent is not an integral part of the system. But [1] reveals also some facts
in common with our system. The reputation data is of global availability and
also the scalability issues are addressed similar to our approach using chord.

The second approach, called AVALANCHE, is based on ideas of the Institute
for Computer Science and Social Studies of Freiburg, Germany (see e.g. [11]).
One part of this project was implementing a reputation mechanism. This ap-
proach has a sanction component that prevents contacting agents with low repu-
tation like our system does with platforms. However in AVALANCHE the metrics
are hard-wired where in our work the metrics are exchangeable in AVALANCE
it is hard-wired. But the main difference is, that AVALANCHE uses a central
trusted entity, while our approach employs a logical central entity, which is phys-
ically distributed and therefore our approach has no single point, that can be
attacked to disrupt reputation management.

5 Conclusion

This paper presented a fully decentralized scheme for reputation management
in MAS based on P2P technology. It provides protocols to store, update, and
retrieve reputation data for agents and platforms and to counter measure at-
tacks on reputation management. The application of our reputation manage-
ment scheme in many domains is supported by its implementation in Java, its
modular design, and the possibility to exchange the employed reputation metric
and reputation value representation.

Mechanisms to identify and authenticate agents and platforms have been
developed. These mechanisms should be extended to rely on the owner of an
agent or a platform, so that more sophisticated methods to prevent attacks on
reputation management are possible. Knowledge about the owner of an agent
or a platform adds extra possibilities to avoid faked ratings and transactions.
It also facilitates tracking of agent and platform owner behavior. For this pur-
pose the data structures to identify agents and platforms can be extended to
also contain the identity of their owners. The owners should have an identity
certified by a trusted third party outside the MAS. To keep track of an owner’s
reputation it would be possible to treat it as a special agent with the special role
owner, that then can be used with the existing mechanisms presented in this
paper. Then, it would be possible to prevent new platforms or agents of owners
with low reputation to enter the MAS, and this would increase the overall trust
in the MAS. To further develop our approach it will be evaluated in different
application domains and with different reputation metrics. An additional step
is the extension by services supporting the ontological dimension (described by
[12]) by providing knowledge about roles and their relationships. These services
may be used by all agents to store their experience about the relationships that

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



5. Conclusion

exist between roles. This can facilitate the estimation of trust in an agent in a
role based on other roles, which are related to that role.

References

1. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information Sys-
tem (2001), Proceedings of the Ninth International Conference on Information and
Knowledge Management (CIKM).

2. Balakrishnan H., Kaashoek M. F., Karger D., Morris R., Stoica I.: Looking Up Data
in P2P Systems (2003), in: Communications of the ACM, vol. 46, 43-48

3. Cahill, V., Shand, B., Gray, E., Bryce, C., Dimmock, N.: Using trust for secure
collaboration in uncertain environments, in: IEEE Pervasive Computing (2003),
vol. 2, 52-61

4. Carter, J., Bitting, E., Ghorbani, A.: Reputation Formalization within Information
Sharing Multiagent Architectures (2002), in: Computational Intelligence, vol. 18,
45-64

5. Castelfranchi, C., Falcone, R.: Principles of Trust for MAS: Cognitive Anatomy,
Social Importance and Quantification (1998), in: ICMAS ’98: Proceedings of the
3rd International Conference on Multi Agent Systems

6. FIPA Abstract Architecture Specification (2002), Foundation for Intelligent Physical
Agents

7. Fischer M., Griinert A., Hudert S., Kénig S., Lenskaya K., Scheithauer G., Kaffille S.,
Wirtz G.: Decentralized Reputation Management for cooperating Software Agents
in open Multi-Agent Systems (2006), in: Bamberger Beitriage zur Wirtschaftsinfor-
matik und Angewandten Informatik, ISSN 0937-3349 (to be published)

8. Golbeck, J., Hendler, J.: Accuracy of Metrics for Inferring Trust and Reputation in
Semantic Web-Based Social Networks, in: Proceedings of 14th International Con-
ference on Knowledge Engineering and Knowledge Management (2004)

9. Jennings N. R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and
Development, in: Autonomous Agents and Multi-Agent Systems (1998), vol. 1, 7-38

10. Kaffille, S., Loesing, K.: Open Chord version 1.0 - Users Manual Chair of Practical
Computer Science and the Distributed and Mobile Systems Group, University of
Bamberg, http://open-chord.sourceforge.net

11. Padovan, B., Sackmann, S., Eymann, T., Pippow I.: Automatisierte Reputa-
tionsverfolgung auf einem agentenbasierten elektronischen Marktplatz (2001), in:
Internationale Tagung Wirtschaftsinformatik 2001, 517-530

12. Sabater, J., Sierra, C.: Social ReGreT, a reputation model based on social relations,
in: SIGecom Exch. (2002), vol. 3, 44-56

13. Wooldridge, M. J., Jennings N. R.: Cooperative Problem Solving, in: Journal of
Logic and Computation (1999), vol. 9, 563-592

14. Wong, H. C., Sycara, K. P.: Adding Security and Trust to Multiagent Systems. in:
Applied Artificial Intelligence (2000), volume 14, 927-941

15. Zacharia, G., Maes, P.: Trust Management Through Reputation Mechanisms, in:
Applied Artificial Intelligence (2000), vol. 14, 881-907

16. Zimmermann, P.: The official PGP User’s Guide. MIT Press, Cambridge, MA,
USA, 1995

This is a preprint of the article published in: H. Tanfield (Editor), International
Transactions on Systems Science and Applications, Volume 1, Number 4, 2006.
http://itssa.xiaglow-research.org.uk/toc/1-4.htm



