Detecting Portability Issues in Model-Driven BPEL Mappings

Jorg Lenhard and Guido Wirtz

Distributed Systems Group, University of Bamberg
An der Weberei 5, 96047 Bamberg, Germany

E-mail: { joerg.lenhard | guido.wirtz}@uni-bamberg.de

Abstract

Service orchestration languages, like the Web Services
Business Process Execution Language (BPEL), have been
frequently used to provide an implementation platform for
model-driven development approaches. As avoidance of
vendor lock-in and portability of process definitions are
central aims of BPEL, most approaches claim to support
a large set of different runtime environments. But, even
though today various runtimes for BPEL are available, ev-
ery runtime implements a different language subset, thus
hampering portability. Our idea is to improve this situa-
tion by using techniques, the Web Services Interoperability
Organization (WS-1) has used to improve services interop-
erability. We describe a portability profile for BPEL that
can detect portability issues in process definitions. Using
this profile, we evaluate the portability of BPEL mappings
used in several model-driven development approaches.

Keywords: SOA, BPEL, portability, profile, mapping

1. Introduction

Software portability is the ability to move software from
one runtime platform to another without having to rewrite
it fully or in part. It is a central characteristic of soft-
ware quality [5]. Next to interoperability, it is also one
of the core aims of service-oriented processes [6]. Being
an OASIS standard that describes an open and platform-
independent XML language for programming executable
processes based on services, BPEL [8] is a main driver
of services portability. For this reason, it is used as ex-
ecution language in various model-driven mappings, such
as [10, 12]. In these mappings, higher level and generally
more abstract process or domain models, such as business
process models, are transformed into executable BPEL code
in the form of one or more process definitions. Through
their property of being portable, BPEL process definitions
enable these approaches to work on many different systems.

Shared standards are the basis for interoperability and
portability of applications that run on heterogeneous plat-

forms. However, these characteristics are difficult to
achieve. Various case studies [7, 13] show that interoper-
ability of heterogeneous systems still is limited. In the Web
Services ecosystem, the WS-I is established as the main
driver of interoperability. Its working mode is to define pro-
files which are standard documents that describe restrictions
and assertions on existing standards, such as the basic pro-
file 2.0 [14]. Such assertions delimit the expressiveness of
a standard or clarify the interpretation of it with the aim of
making implementations more likely to interoperate. Al-
though this approach does not guarantee interoperability, it
relieves the problem and is accepted in practice.

Whereas the WS-I profiles deal with enforcing interop-
erability, portability has been neglected so far. The idea we
present in this paper is to apply the concept of profiles from
the area of services interoperability to the area of services
portability. We address BPEL, as it is designed to build
portable and executable programs. In previous work [4],
we could show that current runtimes for BPEL (i.e., BPEL
engines) implement different parts of the specification and
the portability of process definitions among them is prob-
lematic. Here, we present a portability profile for BPEL
that works similar to WS-I profiles [14] and addresses com-
mon portability issues. The issues are identified through an
extensive benchmark of current engines. Using the profile,
we can detect portability limitations in approaches that use
a model-driven mapping to BPEL [9, 10, 12].

In the next section, we outline related work and in the
following present the BPEL Portability Profile, focusing on
the test assertions defined by it. Thereafter we discuss is-
sues in model-driven approaches using BPEL. Finally, we
summarize the paper and present areas of future work.

2. Related Work

Related work separates in approaches that try to mitigate
portability issues in BPEL and work on BPEL mappings.
[1] also identifies the problem of portability among dif-
ferent BPEL engines which is ascribed to the informality of
the specification and resulting ambiguities. The authors ad-
dress the problem by defining the language Blite which en-



hances BPEL with a formal definition and refines the behav-
ior of problematic constructs. Blite programs can be com-
piled to executable BPEL code for a specific runtime [1].
Such an approach can preempt portability errors, but re-
quires the usage and understanding of another language on-
top of BPEL, which in the case of a formal notation can be
hard to learn. We do not define a new language, but provide
assertions based on empirical data that can be used to detect
portability issues in existing code.

Being an open international standard, BPEL has been
used as target language in numerous model-driven map-
pings. A well-known one is part of the Business Process
Model and Notation (BPMN) [9]. This is a standard de-
veloped by the OMG for modeling and visualizing several
perspectives of business processes. It defines a notation
for process models and a mapping of these process mod-
els to executable BPEL code. Since BPMN 2.0, this map-
ping is updated to the most recent revision of BPEL [9, pp.
445-474]. Before that, academic approaches tried to map
BPMN 1.0 to BPEL 2.0 [10].

In service-oriented computing, a notable distinction of
process models is made between orchestration and choreo-
graphy models [11]. Choreography models describe a
global view on a distributed process between multiple au-
tonomous parties. In a model-driven setting, a local exe-
cutable process for each of the different parties can auto-
matically be derived from the global choreography. Such
a local service-oriented process is called an orchestration.
An example of a choreography to BPEL mapping is given
in [12] based on the ebXML Business Process Specification
Schema (ebXML BPSS).

3. The BPEL Portability Profile

The BPEL portability profile follows the scheme of the
WS-I profiles [14]. It defines test assertions that can be seen
as invariants of the standard specification [8]. Each test as-
sertion defines a normative requirement of the profile that
should be adhered to, if the goal of the profile (in this case
portability of the code) is to be reached.

The assertions for the profile are based on data of an
analysis of the BPEL conformance of a large set of BPEL
engines [4]. The conformance assessment was performed
using the tool betsy' [3]. The benchmark in this paper com-
prises seven engines: ActiveBPEL, bpel-g, Apache ODE,
OpenESB BPEL Service Engine, Easy BPEL, Orchestra,
and the engine of a leading middleware vendor whose name
we cannot disclose for licensing reasons. The conformance
test produces a data set indicating the support for every fea-
ture of the language specification by each engine. Based

!Betsy is a conformance testing tool for BPEL. For more information,
see the project page: https://github.com/uniba-dsg/betsy.
Betsy is also used in [4], but here we consider a larger number of engines.

on this, it is possible to calculate the relative proportion to
which each feature of the language is supported by today’s
runtimes. For each feature that is not fully supported by all
engines and the usage of which might consequently result
in a portability issue, a test assertion can be derived. These
test assertions in turn enable the identification of portability
issues in process definitions.

Test Assertions: Test assertions follow a predefined
structure and contain several decisive elements. For the
WS-I profiles and tools, not all test assertions are testable,
because for several assertions the required information can-
not be collected with the tools. The assertions of this pro-
file base on the structure of process definitions only and as
a consequence all assertions are testable. We defined and
implemented a test assertion for every feature of the speci-
fication that was not supported by all engines under test. In
total, this amounts to almost 70 assertions, each checking
for the usage of specific BPEL elements or activities, their
combination, or their configuration. Assertions that check
for similar aspects, such as the usage of toParts and
fromParts, are grouped together. The testing is based
on XPath 2.0 expressions, similar to the mechanism used
by WS-I profiles. Each assertion defines such an expres-
sion which selects all elements in the code that violate the
criterion the assertion is checking. Based on the amount of
engines that do not support a given feature, a test assertion
can be classified according to a level of severity. The lower
the amount of engines that support a feature, the more of a
barrier to portability this feature will be.

The assertions are specified in the XML format for asser-
tions defined by the WS-I. Crucial elements are the target
and predicate which are both XPath 2.0 expressions. The
target selects all elements in a process definition that vio-
late the test assertion. This is necessary for being able to
produce a list of all violations of an assertion when using
the profile. The predicate determines whether on evalua-
tion the assertion as a whole is counted as passed, which is
the case if there are no elements found by the target. The
diagnostic part specifies the severity of the test assertion.

Portability Levels: Based on the severity of the test as-
sertions violated, it is possible to classify a process defi-
nition into different levels. This classification can be used
to discriminate high-quality process definitions in terms of
their portability from low-quality ones. We define the porta-
bility levels i) portable, ii) widely portable, iii) partially
portable, iv) limited portability, and v) nonportable.

The severity, Sev(ta), of an assertion ta depends on the
degree of support of the feature, S(ta), tested by the asser-
tion. If all engines support a feature, it is fully portable.
If at least 80 % of all engines support the feature, which
can be considered an acceptable level of portability [2], it
is classified as widely portable. If less than 80 %, but more
than 50 % support the feature, it is classified as partially



portable. If less than 50 %, but more than one engine sup-
port the feature, which here amounts to at least 16 %, it is
classified as being of limited portability. Finally, if only a
single or no engine supports the feature, it is classified as
nonportable.

Portable,

Widely Portable,
Partially Portable,
Limited Portability,
Nonportable,

if S(ta) = 100%
else if S(ta) > 80%
else if S(ta) > 50%
else if S(ta) > 16%
otherwise

Sev(ta) =

The classification, Level(p), of a mapping or process
definition p depends on the severity of the test assertions
that it violates. The set V is the set of assertions vio-
lated by p and Ny is its size. Effectively, a process defi-
nition is assigned to the portability level of the most severe
test assertion it violates. It is classified as portable only if
no issues could be detected. This means, if all violations
that are found concern test assertions of the severity widely
portable, then the complete process definition is assigned
to this level. If there is a single violation of the level non-
portable, then the complete process definition is classified
as nonportable.

Level(p) = _mag (Sev(ta;)) where ta; € V

The Bpp Tool: We have implemented the assertions and
classification in the bpp tool>. The tool is written in Java
and takes fragments of BPEL code, being complete process
definitions or not, as input. The test assertions are encoded
in it, and can be printed in the schema of a WS-I profile. At
runtime, bpp checks each test assertion for the input code
and records violations. Finally, the tool produces reports
that conform to the WS-I report schema.

4. Evaluation of BPEL Mappings

In the following, we discuss issues in mappings from
BPMN 1.0 [10], BPMN 2.0 [9, pp. 445-474], and ebXML
BPSS [12] to BPEL.

4.1. BPMN 1.0

A notable contribution in the area of BPMN to BPEL
mappings is [10] which focuses on revision 1.0 of BPMN,
but claims to map to the up-to-date revision of BPEL.
BPMN 1.0 on the other hand maps to an outdated version of
BPEL. The mapping in [10] takes the form of BPMN con-
structs that are translated to fragments of BPEL code and
two examples of complete mappings.

2For more information and a description on how to use the tool, see the
project page: https://github.com/uniba-dsg/bpp. The BPEL
fragments that underpin the discussion in section 4 are included as well.

Issues: The approach focuses on a control-flow oriented
mapping to BPEL and omits several details. Whereas miss-
ing namespaces can be easily fixed, a missing declaration
on how data handling works (i.e., by referencing variables
or using the parts syntax) is problematic when it comes
to the portability of the mapping. The parts syntax for
dealing with data in BPEL is rarely supported, so the under-
specification of data handling results in a portability issue
here. A more severe problem is that the mapping uses ele-
ments unknown to BPEL 2.0 to direct the flow of control, as
for example the i f—case elements in the order fulfillment
process mapping. These elements seem to be a variation
of the BPEL 1.0 switch—-case activity and their usage
renders the mapping nonportable. Issues of minor severity
in the mapping are the usage of 1inks in the £1ow activ-
ity, as for example in the order fulfillment process mapping,
which are only partially supported. A minority of engines
does not support the £1ow activity, onAlarm timeout han-
dlers and onMe ssage handlers when used in a pick.

Discussion: The severe issues in this mapping can be
fixed by using the syntax defined by BPEL. By enhancing
the mapping with a definition of how data items are han-
dled in invoke activities, also this issue can be tackled.
The usage of 1inks is a crucial aspect of the mapping, so
replacing it is likely to be a non-goal, even if it limits its
portability.

4.2. BPMN 2.0

In revision 2.0 of BPMN, the mapping to BPEL is up-
dated to the most recent revision of the specification [9,
pp- 445-474]. The mapping describes elements of BPMN
process diagrams and presents a fragment of BPEL code
for each element. We analyzed each code fragment sepa-
rately and, barring spelling errors in the BPMN specifica-
tion, could detect portability issues in half of these code
fragments. None of them are classified as nonportable, but
25 % of the issues are of limited portability.

Issues: One issue that reduces the overall mapping to
limited portability are the fragments for the send and ser-
vice tasks [9, pp. 448/449] and message end events [9, p.
457]. Similar to the mapping in [10], theses mappings use
an invoke activity in BPEL, but do omit data flow and,
therefore, fail to specify for instance an inputVariable.
Depending on the Web Service operation that is invoked,
this is legal in BPEL, but omiting variables is not sup-
ported by a majority of the engines. The data associations
mapping [9, pp. 467/468] readdresses this issue, but uses
the from- and toParts syntax of BPEL to assign vari-
ables instead of assign activities, which is also rarely sup-
ported. Areas of partial portability in the mapping are com-
pensation intermediate events and compensation end events
[9, pp. 457/458] which both use the compensate or the
compensateScope activity. Error end events [9, pp.



Table 1. Summary of Portability Issues

Mapping Classification Major Issues Minor Issues
BPMN 1.0 [10] nonportable non-BPEL elements, data handling timeout handling, links
BPMN 2.0 [9] limited portability data handling, usage of parts-syntax | compensation, links, timeout handling
ebXML BPSS [12] widely portable - timeout handling

457/458] are mapped to a t hrow. The interpretation of this
activity, in case it is used to terminate a process instance,
varies among engines. Another problematic part is the map-
ping of message handlers [9, p. 452] and message boundary
events [9, pp. 458/459] which map to onMessage event
handlers of a BPEL scope. While such event handlers
are widely supported when used in pick activities, this is
not the case when they are attached to a scope. Finally,
the mapping of error boundary events [9, p. 459], multiple
boundary events [9, pp. 460/461], and the inclusive decision
pattern [9, p. 463] use 1inks, partly in combination with
transitionConditions, to direct the flow of control
which is only of partial portability. Minor issues in the map-
ping are timeout handlers in event sub-processes [9, p. 452]
and the exclusive event-based decision pattern [9, p. 462]
which use onAlarm event handlers and timer intermediate
events [9, p. 456] which rely on the wait activity. These
timing-related activities are unsupported in a minority of
engines. Also, the forEach activity, used in the multi-
instances mapping [9, p. 455], is not ubiquitous.

Discussion: The main portability problems in the map-
ping result from data handling, either from not specifying it
or from using a syntax that is only of limited portability. The
more critical issues could be resolved by using assign ac-
tivities instead of the parts syntax in BPEL.

4.3. ebXML BPSS

[12] defines a mapping from the ebXML Business Pro-
cess Specification Schema to BPEL. The models trans-
lated are state-machine-based choreography definitions and
BPEL fragments for translating states are presented.

Disussion: Only few issues could be detected in the
mapping. No nonportable, limited, or partially portable el-
ements were found, so the overall classification of the ap-
proach is widely portable. The only issues relate to timeout
handling, implemented through onAlarm event handlers
which are not supported by all, but by a majority of engines.

4.4. Summary

Table 1 summarizes the results from the previous sec-
tions. Portability issues could be detected in all mappings
and two out of three produce BPEL code that will only be
executable on a minority of today’s BPEL engines. The
most severe issues in the mappings relate to data handling
which can be expressed in several different ways in BPEL,
of which only a subset is widely supported.

5. Outlook and Future Work

In this paper, we proposed a mechanism for detecting
portability issues in BPEL code, applied it to three model-
driven development approaches that target the language,
and made recommendations on how to fix detected issues.

Future work centers on two areas: Improving the porta-
bility profile by gathering more data on BPEL support and
complementing the qualitative assessment here with a quan-
titative one based on formally defined portability metrics.

References

[1] L. Cesari, A. Lapadula, R. Pugliese, and F. Tiezzi. A tool for
rapid development of ws-bpel applications. In ACM SAC,
Sierre, Switzerland, March 22-26 2010.

M. Glinz. A Risk-Based, Value-Oriented Approach to Qual-
ity Requirements. IEEE Computer, 25(8):34-41, 2008.

S. Harrer and J. Lenhard. Betsy — A BPEL Engine Test Sys-
tem. Bamberger Beitrige zur WI und Al no. 90, University
of Bamberg, July 2012.

S. Harrer, J. Lenhard, and G. Wirtz. BPEL Conformance
in Open Source Engines. In IEEE SOCA, Taipei, Taiwan,
December 17-19 2012. IEEE.

ISO/IEC. Systems and software engineering — System and
software Quality Requirements and Evaluation (SQuaRE) —
System and software quality models, 2011. 25010:2011.

R. Khalaf, A. Keller, and F. Leymann. Business processes
for Web Services: Principles and applications. IBM Systems
Journal, 45(2):425-446, 2006.

S. Kolb, J. Lenhard, and G. Wirtz. Bridging the Hetero-
geneity of Orchestrations - A Petri Net-based Integration of
BPEL and Windows Workflow. In IEEE SOCA, Taipei, Tai-
wan, December 17-19 2012. IEEE.

OASIS. Web Services Business Process Execution Lan-
guage, April 2007. v2.0.

OMG. Business Process Model and Notation (BPMN) Ver-
sion 2.0, January 2011.

C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter
Hofstede, and J. Mendling. From Business Process Models
to Process-Oriented Software Systems. ACM Transactions
on Software Engineering and Methodology, 19(2), 2009.

C. Peltz. Web Services Orchestration and Choreography.
IEEE Computer, 36(10):46-52, October 2003.

A. Schonberger, C. Pfliigler, and G. Wirtz. Translating
Shared State Based ebXML BPSS models to WS-BPEL.
IJBIDM, 5(4), 2010.

A. Schonberger, J. Schwalb, and G. Wirtz. Interoperability
and Functionality of WS-* Implementations. International
Journal of Web Services Research, 9(3):1-22, 2012.

WS-1. Basic Profile Version 2.0, November 2010.

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]



