
A Model-Driven Approach for Monitoring ebBP BusinessTransactions

Simon Harrer, Andreas Schönberger and Guido Wirtz

Distributed and Mobile Systems Group
University of Bamberg

Bamberg, Germany
{simon.harrer|andreas.schoenberger|guido.wirtz}@uni-bamberg.de

Abstract—ebXML BPSS (ebBP) is well-suited to specify
Business-to-Business (B2B) interactions as choreographies of
so-called BusinessTransactions. Web Services and WS-BPEL
as dedicated interface technologies then can be used to provide
the implementation of such choreographies. Tracking and
ensuring the progress of choreographies calls for monitoring
facilities that require gathering information from log data of the
runtime systems that execute WS-BPEL processes. However,
the information provided by WS-BPEL monitoring tools is
fine-granular so that information about the actual progress
in terms of choreographies must be extracted manually.
Our approach streamlines the monitoring of ebBP Busi-
nessTransactions leveraging model-driven engineering. First,
hierarchical communicating automata are used to formalize
BusinessTransactions. Second, WS-BPEL implementations of
these automata are derived such that monitoring events are
propagated to a monitoring service whenever a transition of
the underlying automaton fires. Third, the monitoring service
translates the monitoring events into choreography progress
by visually highlighting the active and visited states within
the hierarchical automata. It thus presents a user-friendly
model that abstracts from the details of the implementing
WS-BPEL processes. This makes tracking the current state
of choreographies accessible to business users.

Keywords-Web Services Monitoring; Choreography; Orches-
tration; WS-BPEL; ebXML BPSS

I. INTRODUCTION

ebXML Business Process Specification Schema (ebBP,

[1]) as choreography format and the Web Services Business

Process Execution Language (BPEL, [2]) as Web Services

orchestration language have proven to be a fruitful tool-

chain for implementing Business-to-Business integration

(B2Bi) scenarios [3], [4]. First, ebBP is used to specify

the admissible sequences of business document exchanges

as well as high-level security and reliability requirements.

Second, BPEL is used to provide the implementation details

based on Web Services. In order to guarantee the progress

of interactions, monitoring the execution of distributed or-

chestrations is inevitable. While the granularity of ebBP is

coarse and suited as communication means between software

engineers or even business users, the granularity of BPEL

is very fine and targeted at execution engines. This raises

the question of how to monitor ebBP choreographies in a

user-friendly way. Existing monitoring approaches for Web

Services orchestrations only provide information at the fine-

grained orchestration level.

Conversely, we provide an approach and a tool that offer

monitoring information with choreography semantics acces-

sible to business users. As ebBP choreographies are used

for communication among humans, this approach promises

better usability. As a first step, we concentrate on so-

called BusinessTransactions as the core building block of

ebBP and formalize these as hierarchical communicating

automata. Using a model-driven approach, we derive and

instrument BPEL implementations of the automata such that

monitoring events reflecting state changes of the automata

are delivered to a central monitoring service at runtime.

This monitoring service then offers functionality to visualize

the progress of BusinessTransactions by highlighting the

currently active states and transitions of the underlying

automaton formalization. Additionally, the execution history

is traced by coloring and annotating the states and transitions

that were traversed beforehand.

The paper proceeds as follows: Section II outlines the

essentials of ebBP and section III introduces the monitoring

concept that relies on representing ebBP BusinessTrans-

actions as hierarchical communicating automata and on

the approach for implementing these using BPEL. Section

IV describes the monitoring architecture as well as the

interplay of the BPEL orchestrations with each other and

the monitoring service. In section V, the generation of

the BPEL orchestrations using a model-driven approach is

described. Section VI presents the user interface of our tool

and validation results. Section VII discusses related work

while section VIII concludes and points out directions for

future work.

II. EBBP BASICS

ebBP choreographies (denoted Collaborations)

are composed from other ebBP choreographies and

BusinessTransactions. In this paper, we concentrate on

monitoring BusinessTransactions (BTs). A BT specifies

the exchange of a request business document and an

optional response business document between a requester

(requesting) and a responding role. Accordingly, one-way

and two-way BTs can be distinguished. The messaging

details for each business document are specified in

the so-called RequestingBusinessActivity

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.41

61

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.41

61

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.41

61

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.41

61

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.41

61

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.41

61

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.41

61

or the RespondingBusinessActivity. Each

BusinessActivity defines whether or not so-called

BusinessSignals shall accompany business documents.

Receipt- and AcceptanceAcknowledgements
as well as corresponding exceptions can be used to

signal the receipt of a legible business document

or the successful import into a business application,

respectively. Additionally, timeouts for the overall BT

(timeToPerform, toTTP) and the exchange of

Receipt-/AcceptanceAcknowledgements (toRA,

toAA) can be defined using the ISO 8601 format for

defining durations. So, if ‘PT6M’ is specified for toRA
this means that a ReceiptAcknowledgement must

be exchanged within a period of time of 6 minutes after

the business document exchange. Further, a retryCount
can be used to specify how many times a message

exchange shall be retried in case of communication

errors. Finally, reliability and security requirements such

as isAuthenticated or isConfidential can be

configured for the message exchanges.

III. MONITORING CONCEPT

For realizing monitoring with choreography semantics, we

assume an integration architecture (cf. [3], [4], [5]) that ac-

commodates typical B2Bi settings and strives for separating

application logic from control flow logic. Existing business

applications (backends) implement application logic such as

the creation and validation of business documents or the

detection of real-world events that trigger business document

exchanges. This functionality is assumed to be available as

Web Services and is used by so-called control processes

that govern the actual cross-enterprise message exchange. It

is the task of these control processes to enforce message

exchange sequences that strictly comply to ebBP choreo-

graphy definitions. Figure 1 visualizes the relation between

control processes and backends. Note that each integration

partner has a control process of its own. Backends do not

interact directly with each other, but request the exchange

of business documents at their associated control process.

Control processes, in turn, cater for secure and reliable cross-

organizational message exchanges and signal the receipt of

business documents as well as the results of BTs to the

backends.

For exemplifying the basic interaction (cf. [4]) between

Figure 1. Basic Integration Architecture (from [4])

control processes and backends, assume that the requester

backend of figure 1 detects the need to perform a BT and sig-

nals this need to the requester control process. The requester

control process then coordinates the business document

exchange with the responder control process. Both control

processes interact with the according backend processes for

fetching/delivering/creating business documents. At the end,

the control processes deliver the result of the BT to the

backend components.

Implementing control processes is a typical orchestration

task and BPEL is a natural candidate for that. Consequently,

the derivation of BPEL based control process implementa-

tions from ebBP choreographies has been proposed in [3],

[4]. In this paper, we refine this concept by enhancing the

BPEL processes with monitoring notifications that signal the

progress of BTs to a central monitoring service that provides

visualization features to human users. In section III-A, a

communicating automata model for ebBP BTs is provided.

The history and progress of BTs is tracked by highlighting

the states and transitions of the automata. Subsequently, the

realization of the model and the monitoring functionality

based on BPEL is sketched in section III-B.

A. BusinessTransactions as Communicating Automata

The ebBP format provides parameterization options for

BTs, but does only informally specify the control flow for

the requester and responder role in a flow diagram (cf. [1],

section 3.6.3). Before a precise model of control flow can be

given, the influence of the different BT parameters on control

flow has to be investigated. For this purpose, we reuse the

analysis and model presented in [5]. Reliability and security

features are recommended to be solved on the line level,

e.g., using the WS-Security [6] and WS-ReliableMessaging

[7] standards. Conversely, the number of BusinessActivities,

BusinessSingals, the setting of timeout values as well as

the retryCount hardly can be provided on the line level and

therefore directly influence control flow.

In [5], a flat communicating automata model for the control

processes of the integration architecture of figure 1 has been

proposed. This model uniquely determines the set of admis-

sible message exchange sequences by providing a formal

operational semantics that is tailored to the characteristics

of Web Services based B2Bi. By separating control flow

from business logic and by using the automata model,

control processes can be translated into fully executable

BPEL processes. The isolation of control flow in control

processes becomes evident in the choice of automata com-

munication roles, i.e., in a Partner, a Backend and a

Collaboration role. The Partner role is used for

exchanging messages with the integration partner’s control

process, the Backend role represents interactions with

existing business applications and the Collaboration
role represents the superordinate process instance that gov-

erns the flow between subsequent BTs. The control flow

then is specified by defining message send (role!msg) and

62626262626262

Figure 2. Sample Requester Automaton

receive (role?msg) events, by using states for capturing the

effect of messaging events and by connecting these using

transitions. The relevant messages are a start message,

the business document to be exchanged (bizDoc) and

the BusinessSignals Receipt-/Acceptance-Acknowledgement

as well as Receipt-/Acceptance-AcknowledgementException

(ra,rae,aa,aae). Additional control messages are ge for

signaling general exceptions, solBizDoc for requesting

the creation of a business document as well as persist
and result for transaction demarcation and result prop-

agation, respectively. The BT timeout definitions (toTTP,

toRA, toAA; cf. section II) and messaging failure events

(denoted as msg Fail) are defined as events that are local

to the partner. Finally, some helper variables for controlling

the retryCount are used. As the automata model only acts as

basis for monitoring BTs, please see [5] for the full formal

model and semantics.

We basically reuse the flat automata model of [5], but

transform it into hierarchical communicating automata for

better visualization and for representing typical transaction

phases such as INIT, Commit or Failure. Figure 2

shows the hierarchical automaton for the requester role

of a One-Action BT with both BusinessSignals (ra, aa)

specified and using all timeout values. Using this sample,

we demonstrate the functional integrity of our approach

and tool. All other configurations of BTs either are a

subset of the automaton (when leaving out some Busi-

nessSignal, timeout value or retryCount) or just require a

duplication of the automaton (in case two business doc-

uments are to be exchanged within a Two-Action BT).

For interpretation of the automaton, we comment the first

few transitions: The requester role, which is the focal

role of the automaton, starts out in the Start state and

becomes activated by receiving the start message from

the Collaboration role. Thereby, the Started state

as well as the hierarchical states Transaction and REQ
are entered. If a ge message is received from the Partner
(defined on Transaction) the currently active sub-states

63636363636363

of Transaction are interrupted and the Partner-GE
state is reached for subsequently notifying the Backend
and the Collaboration about the result. Similarly, the

timeout toTTP defined on REQ leads to state CP-GE. In

the ‘intended’ flow, the requester role sends a solBizDoc
to the Backend role and receives the bizDoc in turn.

After reaching DeliverBizDoc, the requester role tries

to send the bizDoc to the Partner. As the interaction

with the Partner crosses the boundary of the ‘controlled’

internal environment of the requester role (cf. figure 1),

send failures must be considered. Therefore, the local event

Partner!bizDoc_Fail captures such a send failure.

Depending on the number of failed attempts and the

retryCount setting, the BT is aborted or continued. The

interpretation of the remaining automaton transitions does

not deviate conceptually from the presented transitions.

B. Monitoring by Instrumenting BPEL

Our approach to monitoring ebBP BTs relies on gen-

erating BPEL based control process implementations from

BT specifications using model-driven engineering. First, the

automaton representation of the respective BT specification

is loaded. Then, the automaton is translated into BPEL.

The basic idea for monitoring is extending the generation

process with a call to a central monitoring service whenever

a transition of the automaton is taken. In [3] and [4],

flat automata structures are mapped to BPEL by means

of switching across the automata states within a while
loop. We apply this concept to hierarchical automata by

nesting such while loop constructs according to the nesting

structure of the hierarchical automaton.

Listing 1 shows the basic structure of the BPEL pro-

cess that implements the automaton depicted in figure 2.

First, partnerLinks for each role of the communicating

automaton are defined and a correlationSets decla-

ration is used to configure a unique transaction identifier

(initialized upon receipt of the start message). Then a

first sequence and scope (named ‘main’) are defined

for declaring global variables. Within the ‘main’ scope’s

sequence two further scopes (‘INIT’ and ‘AUTOMA-

TON’) for dealing with the initialization of the control

process and implementing the automaton states are defined.

The ‘INIT’ scope shows the typical incorporation of mon-

itoring events by defining dedicated monitoring scopes
after receive or invoke activities. Within these scopes,

usual Web Services calls are used to propagate the mon-

itoring information to the central monitoring service. The

‘AUTOMATON’ scope shows the while for switching

across the top-level states of the requester control process

(except for the Start state that has been dealt with in the

‘INIT’ scope). The hierarchical top-level states then set up

nested while loops for switching across their sub-states.

Timeouts are implemented by means of a dedicated timer
Web service that takes a duration and the type of timeout

(toTTP, toRA, toAA) and calls back the BPEL process when

the timer has run out. Accordingly, the monitoring event

signaling a timeout is propagated to the monitoring service

after receipt of a timeout callback. Message failure events

are propagated to the monitoring service after catching the

corresponding communication error in BPEL fault handlers.

The full BPEL process specifications that are generated for a

particular communicating automaton are made available for

download whenever a user finishes the generation process

for a particular BT in the tool (cf. section V).

Listing 1. Basic BPEL Structure for Requester Role of Figure 2

1 <process ..>
2 <partnerLinks../>
3 <correlationSets../>
4 <sequence><scope name="main">
5 <variables../>
6 <sequence>
7 <scope name="INIT"> ..
8 <receive name="start-INIT-Start" ../>
9 <scope name="MONITOR-INIT-Start_1">

10 .. <invoke name="monitor-start-INIT-Start_1"
../>

11 </scope>..
12 </scope>
13 <scope name="AUTOMATON">
14 ..
15 <while name="SWITCH-BTA">
16 <condition>not($isFinished)</..>
17 <if name="BTA-Transaction">
18 <condition>$BTA-Transaction</..>
19 <scope name="SCOPE-BTA-Transaction">
20 ..
21 <scope name="SCOPE-BTA-Transaction-REQ">
22 ..
23 <while name="SWITCH-BTA-Transaction-REQ">
24 ..REQ implementation..
25 </while>
26 ..
27 </scope>
28 </scope>
29 </if>
30 <if name="BTA-abort">
31 ..BTA-abort implementation..
32 </if>
33 .. <if/> for BTA-Failure, BTA-Commit and BTA-

Success..
34 </while>
35 </scope>
36 </sequence>
37 </scope></sequence>
38 </process>

IV. MONITORING ARCHITECTURE

In this section, the architecture of the tool is outlined.

It consists of three components, namely the Monitoring
Engine, the Test Engine and the BPEL Engine as shown

in figure 3.

For the BPEL Engine, the Oracle BPEL Process Manager1

has been chosen. As described in more detail in section V,

the BPEL control processes are deployed onto this engine

which instantiates and executes instances of the control

processes.

As the instances of the BPEL control processes do not

only communicate with the corresponding BPEL control

1See http://www.oracle.com/technetwork/middleware/bpel/

64646464646464

Figure 3. Monitoring and Simulation Architecture

process instances of their integration partner but also in-

tegrate the backend systems as well as additional services,

stub implementations have to be provided. These stub im-

plementations support the message property-based BPEL

correlations mechanism for separating BPEL process in-

stances. The Test Engine supports bidirectional communica-

tion with BPEL instances by providing SimulatorCtrls

with SimulatorInstances which receive messages via

a SimulatorServer and send messages to the control

processes via the SimulatorClient interceptor. The

SimulatorCtrl creates its SimulatorInstances

which reuse the BPEL correlation information and act as

a message sending and receiving proxy for the instances.

The messages exchanged by each SimulatorInstance
with its corresponding control process instance are stored

and, therefore, are retrievable for the user. For the Backend
and the Collaboration partner as well as for the Timer and

the business document validation service, such a component

has been created by means of inheritance. These components

are able to create dummy messages which conform to

the communication protocol without user interaction. The

dummy messages are not automatically sent so that the

user can decide when to trigger their transmission. Note

that the Test Engine only has been created for validating

our approach and would be replaced by the functionality of

business applications in a real-world setting.

The main component is the Monitoring Engine onto

which the hierarchical communicating automata have to

be deployed. Each separate configuration of a BT, i.e., the

selection of BusinessSignals, timeouts etc., is represented by

an AutomatonDefinition while each instantiation of

a BT is represented by an AutomatonInstance.

For each AutomatonDefinition deployed, a

MonitoringCtrl object is created which encapsulates

the AutomatonDefinition and can receive monitoring

events from the corresponding control process instances

by providing a Web service endpoint. Received events

are forwarded to the MonitoringInstance that

correlates to the BPEL control process instance the

event originated from. Each MonitoringInstance
serves as a proxy for an AutomatonInstance.

These AutomatonInstances are created by

the Automaton Engine which allows to execute an

AutomatonDefinition by firing events. The state

information like the current state and the latest fired

transition is stored in an AutomatonInstance. The

VisualizationInstances of the Visualization
Engine are created by the MonitoringInstances
and are responsible for exporting snapshot images which

can be viewed by the user. The visualizations and the

resulting images are created with the yFiles for Java

2.82 library. This library also provides automatic layout

algorithms which are applied during graph creation. The

VisualizationInstances are connected to the

AutomatonInstances via the Observer pattern which

allows for constant updates upon state changes. The

automaton visualizations are created as follows. First, the

visual representation of the AutomatonDefinition is

initialized by creating group nodes for composite states,

nodes for states, and creating edges for transitions. Next,

upon state change, the current state and latest transition are

colored red while the already visited states and transitions

are marked green. However, as loops are allowed and

color alone cannot determine the unique execution path,

transitions are labeled according to their occurrence in the

execution history.

Both the Test Engine and the Monitoring Engine are

implemented in Java and Groovy. They leverage the JAX-

WS 2.23 API to create Web Services on demand at runtime

by means of the Endpoint class as well as Web Services

clients.

The user can interact with both, the Test Engine and

the Monitoring Engine, via an integrated Web interface.

The Web interface has been created using the Google

Web Toolkit (GWT)4 which is connected to the Monitor-
ing and Test Engine via GWT Remote Procedure Calls

(RPC). It aggregates all information for a specific ebBP

BusinessTransaction definition and its instances by showing

monitoring events and their visualization as well as the

messages exchanged. Additionally, it allows to send dummy

messages to the control processes via the Test Engine.

Although the web interface aggregates information of the

Monitoring Engine and the Test Engine, both engines run

independently. This is important because, in a real world

2See http://www.yworks.com/en/products yfiles about.html
3See http://www.jcp.org/en/jsr/detail?id=224
4See http://code.google.com/webtoolkit/

65656565656565

scenario, the Monitoring Engine would be integrated into

corporate monitoring tools while the Test Engine would be

substituted by company-specific business applications. The

Test Engine solely exists to simulate and test the execution

with dummy messages. In section VI, the usage of the web

interface is exemplified.

V. GENERATION PROCESS

The model-driven generation process automatically de-

rives the automata and the control processes from a given

BT. The required steps are shown in figure 4 and are

described in the following.

Figure 4. The Generation Process with the Created Artifacts

The process is triggered by the user who has to provide

parameters to configure the desired ebBP BT. After vali-

dating the user parameters, an ebBP document containing

an ebBP choreography definition with a single BT skeleton

is loaded. This skeleton is altered according to the user

parameters and validated against the ebBP XSD schema.

The tool supports the configuration of one-way BTs with op-

tional ReceiptAcknowledgement and AcceptanceAcknowl-

edgement as well as corresponding timeouts.

Next, the model-driven generation process is forked into

the process for the requesting role and the responding role of

the BT. Each generation thread uses the configured ebBP BT

along with the role they target at and transform the given BT

to a hierarchical communicating automaton. This is done by

employing predefined mappings from ebBP BTs to hierar-

chical communicating automata. While the different options

for selecting BusinessSignals and timeouts are reflected in

different mappings, the concrete values for timeouts and

retryCount are used as parameters of the mappings.

The derived hierarchical communicating automaton is

then transformed into its corresponding BPEL control pro-

cess. The transformation maps each composite state, state

and transition with their events to specific BPEL activities.

The target BPEL structure is exemplified in listing 1. Along

this transformation, the dependent WSDL files for the re-

quired Web Services interfaces as well as the required XSD

files for the data types are created. Additionally, required

component descriptors are generated allowing for packaging

the BPEL process as a Composite Application5 which can

be deployed to the selected BPEL engine.

In order to represent ebBP BTs as hierarchical com-

municating automata and BPEL control processes in the

5See http://www.oasis-opencsa.org/sca

model-driven process, Ecore meta-models based on the

Eclipse Modeling Framework (EMF)6 have been created.

The EMF framework itself provides facilities to load and

store meta-models as well as languages to transform models

to other models or to text. Correspondingly, Ecore models

for representing ebBP BT configurations, BT automaton

representations and an abstract representation of BPEL have

been created. The generation of BPEL processes then is

performed in three steps. First, model-to-model transforma-

tions for translating ebBP configurations into automata and

automata into abstract BPEL models, respectively, based

on Eclipse QVTO (Query/View/Transformation Operation

Mappings) are applied. Finally, a model-to-text transforma-

tion based on Eclipse Acceleo is applied to generate actual

BPEL code from the abstract BPEL representation.

VI. DEMONSTRATION AND VALIDATION RESULTS

The created tool allows two points of interaction with the

user. Both are explained in the following.

Figure 5. BusinessTransaction Configuration Form

Configure BusinessTransaction: In the first step, the

user has to configure a BT by providing a name, timeouts,

the retryCount as well as the selection of BusinessSignals.

This is done by using the web-based form shown in figure

5 which guides the user by means of tool-tips as well as

real-time validations. By clicking on the button generate,

the generation process described in section V starts while the

user waits for the process to complete. After completion, the

created hierarchical communicating automata are deployed

automatically to the Monitoring Engine, the BPEL control

processes to the BPEL Engine and the partner simulation

for this ebBP BT is started within the Test Engine. When

all artifacts are deployed, the user is forwarded to the

monitoring GUI for monitoring and simulating the execution

of the generated ebBP BT.

Simulate and Monitor the Execution of BusinessTrans-
action: Simulating and monitoring the execution of BTs is

controlled using the web-based interface shown in figure 6.

Recall that a control process does not contain any business

logic, but only controls the exchange of messages between

backend and the integration partner’s control process. In

consequence, the exchange of messages has to be triggered

using the simulator functionality outlined in section IV. For

6See http://www.eclipse.org/modeling/emf/

66666666666666

Figure 6. Monitor and Simulate the Execution of a BusinessTransaction

triggering a BT run, the user has to create an execution

instance by clicking the new instance button which creates

a UUID that is used for message correlation. This execution

instance corresponds to a SimulatorInstance of the

Test Engine. Next, the user can send preconfigured mes-

sages to the control processes of the requesting role or the

responding role by using the controls shown at the top of

figure 6. The labels of the controls correspond to the message

exchange events as defined for the communicating automata

in section III-A. Note that the interface depicted in figure

6 allows for sending messages to both control processes of

a BT implementation for providing a test facility that spans

the complete integration architecture. Only the messages that

are sent from control processes cannot be triggered by the

interface. The exchanged messages of an execution instance

can be inspected for each participating role in the tab named

messages while the visualization of the progress is shown

in tab visualization.

Using the tool’s functionality, the different permutations

of BT control flow configuration options could successfully

be performed, i.e., the happy path of the interactions could

be performed. Due to dependencies between the configu-

ration options, e.g., a toAA does not make sense for a

BT without AcceptanceAcknowledgement, the number of

permutations amounted to 13. The reaction to erroneous

behavior, e.g., not providing an AcceptanceAcknowledge-

ment on time or sending a BusinessSignal that has not

been configured, has not been tested for each permutation.

Instead, the reaction to each type of error has been tested for

the BT configuration that uses all available BusinessSignals,

timeouts and the retryCount. Based on these results, we are

confident to provide a fully functional prototype implemen-

tation of the integration architecture of figure 1. Please note

that the prototype cannot simulate message sending failure

events as this would require the interception of messages.

VII. RELATED WORK

The proposed monitoring approach reuses several existing

concepts and combines them. The authors of [8] proposed a

model-driven process for creating BPEL orchestrations from

ebBP artifacts. However, neither a formalization of valid

interactions nor an implementation of the BPEL generation

are provided. The idea of instrumenting BPEL processes

for monitoring aspects is stated in [9] while the concept

of having monitor classes with its corresponding monitor

instances is proposed in [10]. A formal basis for the com-

municating automata for ebBP BTs is given in [5] on which

the hierarchical communicating automata have been created.

The ideas and concepts have been combined and extended

to design and create the approach and tool presented in this

paper.

In several approaches, the execution of ebBP BT-like

concepts such as UMM BusinessTransactions or RosettaNet

PIPs is proposed [8], [11], [12], [13], [14]. However, mon-

itoring and visualization features as presented in this paper

have not been reflected in the corresponding implementation

concepts so far.

VIII. CONCLUSION AND FUTURE WORK

This paper presents an approach and tool for monitoring

the progress of ebBP BTs by incorporating monitoring

notifications into the implementing BPEL processes. Mon-

itoring information is tied to hierarchical communicating

automata as a B2Bi choreography-level formalization of BTs

for ensuring usability. Using a model-driven approach, the

BPEL-based BT implementations that include monitoring

events whenever a choreography-level state transition is

taken are automatically generated. The conceptual founda-

tion for being able to derive fully executable BPEL processes

automatically is an integration architecture that separates

business logic from control flow. The BPEL processes focus

on implementing control flow while the use case specific

business logic is abstracted by a set of standard interfaces.

The feasibility of the approach is demonstrated by providing

a prototypic implementation that supports all essential BT

configuration options that influence control flow.

Future work targets at supporting a larger subset of ebBP

choreographies and at generalizing the underlying model for

visualization.

Concerning user-defined ebBP choreographies, two ebBP

dialects for composing BTs are available [3], [4] that can

be interpreted as state machines. Hence, reapplying the

automata model by interpreting BTs as sub-states of larger

ebBP choreographies seems to be applicable. Special focus

will be put on the constraints for folding such automata for

maintaining usability.

Concerning generalization of the approach, alternative

choreography languages as well as orchestration languages

are to be considered:

For choreography languages, the distinction between inter-

connection choreographies and interaction choreographies

[15] seems to be pivotal. While interconnection chore-

ographies focus on the local send and receive actions of

67676767676767

individual partners as well as the interconnection of cor-

responding send/receive actions, interaction choreographies

treat corresponding send and receive events as atomic actions

and define sequences of these actions. ebBP corresponds to

the class of interaction choreographies and provides BTs

as atomic building blocks. Other interaction choreographies

such as WS-CDL [16] or Let’s Dance [17] seem to be acces-

sible to hierarchical graph structures as well. The challenge

for these languages is the deviating semantics of transitions

between graph elements which may require additional logic

for interpreting and visualizing monitoring events. Inter-

connection choreography languages such as BPEL4Chor

[18] or Inter-Organizational Workflow Nets [19] frequently

cannot be decomposed hierarchically and therefore require

fundamentally different visual representations.

For orchestration languages, alternative implementation lan-

guages such as the Windows Workflow Foundation 47 and

abstract orchestration characterizations modeled in more

high-level languages are worth being investigated. Those

high-level orchestration languages such as Yet Another

Workflow Language8 [20] or the Business Process Model

And Notation 2.09 [21] also offer a visual model and

therefore may be an option for visualizing interconnection

choreographies.

REFERENCES

[1] OASIS, ebXML Business Process Specification Schema Tech-
nical Specification, 2nd ed., OASIS, December 2006.

[2] ——, Web Services Business Process Execution Language,
2nd ed., April 2007.

[3] A. Schönberger, C. Pflügler, and G. Wirtz, “Translating shared
state based ebXML BPSS models to WS-BPEL,” Interna-
tional Journal of Business Intelligence and Data Mining,
vol. 5, no. 4, pp. 398 – 442, 2010.

[4] A. Schönberger and G. Wirtz, “Towards executing ebBP-Reg
B2Bi choreographies,” in Proceedings of the 12th IEEE Con-
ference on Commerce and Enterprise Computing (CEC’10),
Shanghai, China. IEEE, November 10-12 2010.

[5] A. Schönberger, G. Wirtz, C. Huemer, and M. Zapletal, “A
composable, QoS-aware and web services-based execution
model for ebXML BPSS businesstransactions,” in Proc. of
the 6th 2010 World Congress on Services (SERVICES2010),
Miami, Florida, USA. IEEE, July 2010.

[6] OASIS, Web Services Security: SOAP Message Security 1.1
(WS-Security 2004), OASIS, February 2006.

[7] OASIS, Web Services Reliable Messaging (WS-
ReliableMessaging) Version 1.2, OASIS, February 2009.

[8] J.-H. Kim and C. Huemer, “From an ebXML BPSS choreo-
graphy to a BPEL-based implementation,” SIGecom Exch.,
vol. 5, no. 2, pp. 1–11, 2004.

7See http://msdn.microsoft.com/en-us/library/dd489441.aspx
8See http://www.yawlfoundation.org/
9See http://www.bpmn.org/

[9] J. Schiefer, H. Roth, and A. Schatten, “Auditable WSBPEL:
Probing and monitoring of business processes with web ser-
vices,” International Journal of Business Process Integration
and Management, Inderscience, vol. 2, no. 1, pp. 60–73, 2007.

[10] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-
time monitoring of instances and classes of web service
compositions,” in IEEE International Conference on Web
Services 2006 (ICWS ’06), 2006, 2006, pp. 63–71.

[11] R. Khalaf, “From RosettaNet PIPs to BPEL processes: A
three level approach for business protocols,” Data & Knowl-
egde Engineering, vol. 61, no. 1, pp. 23–38, 2007.

[12] A. Schönberger and G. Wirtz, “Realising RosettaNet PIP
Compositions as Web Service Orchestrations - A Case Study,”
in The 2006 International Conference on e-Learning, e-
Business, Enterprise Information Systems, e-Government, &
Outsourcing (CSREA EEE), Las Vegas, Nevada, USA, 2006.

[13] C. Huemer and M. Zapletal, “A state machine executing
UMM business transactions,” in Proceedings of the 2007
Inaugural IEEE International Conference on Digital Ecosys-
tems and Technologies (IEEE DEST 2007), IEEE Computer
Society. Cairns (Australia): IEEE Computer Society, 2007.

[14] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and M. Zaple-
tal, “Deriving executable BPEL from UMM business transac-
tions,” in Proceedings of the IEEE International Conference
on Services Computing (SCC), 2007, pp. 178–186.

[15] G. Decker, O. Kopp, and A. Barros, “An introduction to
service choreographies,” Information Technology, vol. 50,
no. 2, pp. 122–127, 2008.

[16] W3C, Web Services Choreography Description Language,
1st ed., W3C, November 2005.

[17] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hof-
stede, “Let’s Dance: A language for service behavior mod-
eling,” in Proceedings of the 14th international conference
on cooperative information systems (CoopIS’06), Montpellier,
France, 10 2006, pp. 145–162.

[18] G. Decker, O. Kopp, F. Leymann, and M. Weske,
“BPEL4Chor: Extending BPEL for modeling choreogra-
phies,” in Proceedings of the 2007 IEEE International Con-
ference on Web Services (ICWS), July 9-13, 2007, Salt Lake
City, Utah, USA, 2007, pp. 296–303.

[19] W. M. P. van der Aalst and M. Weske, “The P2P approach to
interorganizational workflows,” in CAiSE ’01: Proceedings of
the 13th International Conference on Advanced Information
Systems Engineering, 2001, pp. 140–156.

[20] W. M. P. van der Aalst and A. H. M. ter Hofstede, “Yawl:
yet another workflow language,” Information Systems, vol. 30,
no. 4, pp. 245 – 275, 2005.

[21] OMG, Business Process Model and Notation, v2.0, OMG,
January 2011.

68686868686868

