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Abstract—The selection of the best fitting process engine for
a specific project requires the evaluation of engines according
to various requirements. We focus on the non-functional
requirement robustness, which is critical in production environ-
ments but hard to determine. Thus, we propose an evaluation
framework to reveal important robustness criteria of process
engines. In this work, we focus on message robustness, i.e., the
ability to handle the receipt of invalid messages appropriately.
In a case study comprising five open source BPEL engines, we
determine message robustness by injecting faults into robustly
designed processes as a reply to a previously sent request from
an external virtual service and assert their behavior. The results
show that the degree of message robustness significantly differs,
hence, robustly designed processes do not necessarily lead to
robust runtime behavior, the selected engines still play a major
role.

Keywords-virtual services, BPEL, process engines, testing,
robustness

I. INTRODUCTION

With the rise of business processes throughout industry
and academia, process languages and their execution envi-
ronments, process engines, have become ubiquitous within
IT landscapes. According to market research [1], this has
lead to a $2.8 billion business process management (BPM)
industry in 2013, with an estimate of up to $8.3 billion in
2019. Especially executable business processes are on the
rise [2]. There are many executable process languages, e.g.,
the Web Services Business Process Language 2.0 (WS-BPEL,
or BPEL for short) [3] and the Business Process Model and
Notation 2.0 (BPMN) [4]. And even more proprietary as well
as open source process engines that can execute processes
defined in these process languages. As a result, there is
a need to compare and choose the process engine which
is the best fit for a specific project. While there are many
comparison criteria, e.g., conformance, performance, security
or installability, we focus on robustness as an essential
non-functional requirement in a multitude of production
environments, which is seen as a very important property
of process engines [5]. Robustness is the degree to which a
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system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions [6].
Especially in production environment, this property is very
important as not robust systems may crash and fail, causing
costs.

The comparison of software in general is a topic that
easily turns into discussion that is driven by personal taste
and preferences rather than by a comparison of facts. Despite
the wide academic interest in such comparisons, little work
on software comparison can be found, e.g., the comparison
of operating systems [7]. We aim to contribute to software
comparison in general by focusing on the area of service-
oriented computing, more precisely middleware for service
orchestration, and evaluate robustness as one of essential
non-functional requirements.

Because robustness itself is a wide term, we have created a
robustness framework consisting of six robustness criteria that
are relevant for BPEL engines. As part of a case study, we
propose a method to evaluate the criterion message robustness
which is applied onto five open source BPEL engines in an
experiment. Our results of this experiment reveal that there
are major issues in message robustness in these engines,
while some of them can be countered by countermeasures
in the processes themselves.

This paper is organized as follows. First, the related work
regarding benchmarking process engines, existing robustness
testing techniques and virtual services is given in Section II.
Next, we outline the robustness framework for BPEL engines
in Section III. Subsequently, we present a case study on
evaluating message robustness of open source BPEL engines
in Section IV. Finally, we conclude this paper in Section V,
including future work.

II. RELATED WORK

Related work comprises benchmarking BPEL engines,
robustness evaluations and testing, and virtual services.

The benchmarking of BPEL engines has been focused on
evaluating the conformance in terms of feature support [8],
expressiveness in terms of workflow pattern support [9], in-
stallability in terms of effort of use [10] and performance [11],



[12] whereas robustness is only taken into account by [13]
despite its importance [5, p. 12]. Kopp et al. [13] focus on
fault propagation and evaluate it manually for a single BPEL
engine (Apache ODE) according to the implementation of the
layers TCP, HTTP, SOAP and WS-Adressing by analyzing
its source code. In contrast, we provide a framework for
evaluating the robustness of process engines automatically
and reproducibly. However, we reuse parts of the fault
propagation layers and fault categorizations from Kopp et
al. [13] for our framework and case study.

Robustness considerations mostly concentrate on how to
create a robust web service using process languages [14]-[20].
Dobson [14] proposes four BPEL-based fault tolerance pat-
terns which found themselves on a variety of existing BPEL
activities, including the faultHandlers for forward error
recovery with their catch and catchAll activities and
the compensationHandler for backward error recovery.
In our experiment, we only use the forward error recovery
and leave backward error recovery for future work. Likewise,
these fault handlers in BPEL are used in [17] as part of a
framework in which specified fault handling mechanisms
can be automatically implemented in BPEL. In [16], [20],
these fault handling activities of BPEL are used to build
fault-tolerant proxies within BPEL, i.e., monitored and fault-
tolerant invocations.

In [21], a very similar approach is presented which
evaluates the robustness of a single BPEL process on an
unspecified engine with . In contrast, we provide a robustness
framework encompassing not only message robustness but
also five other criteria. Moreover, we evaluate the robustness
of five engines with two BPEL processes systematically,
hence, the focus is different as well.

Furthermore, there are multiple papers describing robust-
ness testing techniques, i.e., how to inject faults into the
system under test and compare the observed behavior with
the expected one [22]. For this work, we are also creating
malicious SOAP messages, but instead of aiming to breach
any security measurements we are solely interested in the
type of observable reaction upon receiving faulty SOAP
messages, being either the correct response, timeouts and
crashes or ignoring the error. This idea of using faulty
messages to detect whether an existing bug is absent in
a system under test is called fault-based testing and was
developed by Morell [23]. Among other approaches, it can be
applied to validate messages and their specifications as well,
e.g., the fault-based testing of XML schema definitions [24]-
[26], making it suitable for our approach. Such messages
are mostly created using methods from either fuzz testing or
mutation testing. Miller et al. [27] introduced fuzz testing as
a special form of random black box testing. They have fed
the system under test with automatically generated inputs
and only verified whether the system under test crashes
which would mark the failure of the test while any other
behavior marks the passing of the test. We deviate from

this technique as we do not generate the inputs or messages
randomly. Moreover, while a crash or timeout is a failure in
our method as well, we focus on whether the fault handling
mechanisms of the process engine still work as expected. In
contrast to fuzz testing, mutation testing does not generate
the inputs randomly but applies mutation operators on source
code introducing new bugs, i.e., mutants, which have to be
detected, i.e., killed, by the test suite [28]-[30]. Nevertheless,
instead of mutating the source code and running the test suite,
the ideas of mutation testing itself can be applied to input
data as well by mutating the data and feeding the data into
the system under test which must detect and reject the faulty
input. For example, Xu et al. [31] as well as Lee et al. [32]
generate test cases in a form of XML messages by applying
mutation operators onto XSDs and DTDs and generating
pertubed XML messages from their mutated XSDs and DTDs
respectively. Franzotte et al. [33] apply mutation testing to
XML schemas.

Finally, we also list the work related to the Service Virtu-
alization, i.e., the practice of capturing and simulating the
behavior, data, and performance characteristics of dependent
systems, and deploying a Virtual Service that represents
the dependent system without any constraints [34]. This
standardization leads to lower creation costs and a higher
portability of virtual services, which in turn makes the
simulation of external unavailable web services feasible even
in complex and dependent IT landscapes. Such a simulation
is necessary to reduce risks during testing and to avoid testing
in production environments [35]. Ideas on how simulation
of dependent web services behavior can ease the software
testing process are described in [36]. In the case study of this
work, we use the tool Parasoft Virtualize [37] to simulate a
faulty external partner service in a standardized manner.

III. ROBUSTNESS FRAMEWORK FOR BPEL ENGINES

The robustness framework consists of six criteria that we
consider being the most important aspects of robustness of
BPEL engines. We derived these aspects from the typical
execution architecture of BPEL engines as shown in Fig. 1.
The gray box denotes the BPEL engine which allocates
resources, i.e., CPU, memory and disk, to execute instances
of a deployed process. The instances can exchange messages
with external services as well as their callers. Moreover,
they use resources of the engine to be executed, and can
be passivated to a persistent storage to save the state
of an instance so that it can be recovered later on. We
abstracted from engine components, e.g., a message router
and dispatcher, as this is not relevant for our robustness
evaluation. Each robustness criterion is linked to an edge
in the image and displayed in bold and upper case. While
BPEL has complex parallel activities and a complex message
correlation mechanism, the evaluation of these is part of a
functional evaluation. Because of this, we did not include



it in our robustness framework. The criteria are outlined as
follows.
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Figure 1. Robustness Criteria Derived Using BPEL Engine Architecture

Message robustness refers to the ability to handle in-
coming faulty messages appropriately in process instances.
Appropriately in this case means that the process instance
can react upon this error, inappropriately would be when the
process instance crashes, times out or the fault is undetected.
Messages can either be received normally from the front
door when a system sends a request to the process instance,
or from the backdoor as a response from an external partner
service. As the incoming messages are SOAP messages
transmitted over HTTP, faults can occur on three levels,
namely, HTTP, SOAP and XML payload of the SOAP
message, e.g., XML and SOAP is not well-formed XML code
or not valid to their corresponding XSD, or the wrong status
code or MIME/TYPE is transmitted as part of the HTTP
header. As the messages are transported over the network, we
include transport level issues as well as part of this criterion,
e.g., TCP timeouts or DNS problems.

Dynamic partner link robustness refers to the ability to
handle bad partner link endpoints appropriately [38], [39].
In BPEL, partner links can be set dynamically at runtime
for external services, hence, they can be set to a bad value
at runtime. The engine is considered robust when it provides
the process instance with the ability to react upon the usage
of bad partner link endpoints.

Stress robustness refers to the ability of the engine to
react upon a major increase in workload with their allocated
resources, namely, CPU time and memory/disk space. An
engine is considered robust in an absolute way when an
arbitrary large workload cannot crash the engine or render it
unresponsive. An engine is considered more robust relative
to another engine when it can handle more stress before
crashing or becoming unresponsive.

State robustness refers to ability to handle crashes of
the process engine in a way so that the administrator can
recover the current instance data. An engine is considered
robust when an arbitrary large workload cannot set the engine
in a broken and inconsistent state. It may slow down its
performance, or even crash it, as long as the state of the
engine is still consistent and recoverable. For example, when
the virtual machine stops working with an out of memory

error, the engine should make sure that the execution state
of the processes has been safely passivated to disk which
can be stored to recover from this error.

Termination robustness refers to the ability to detect
issues that avoid the termination of process instances. This
comprises the detection of deadlocks, e.g., unreachable
activities [40], or livelocks, e.g., an infinite loop, at either
compile time or runtime. The more of these situations an
engine is able to detect and react upon, the more robust it
can be considered. At compile time, an appropriate reaction
is to inform the user about the issue and optionally to reject
the faulty process. At runtime, an appropriate reaction is to
inform the user about the issue and optionally halting in case
of a livelock or terminating the process instance in case of a
deadlock automatically.

Isolation robustness refers to the ability to isolate the
execution of a single process instance to ensure that such
an instance cannot affect the whole system. For example,
when a process instance has been caught up in an infinite
loop it should not be able to crash the engine or render it
unresponsive. To be considered robust, the engine has to
prevent situations like this.

IV. CASE STUDY: EVALUATING MESSAGE ROBUSTNESS

In this section, we present a case study on how to evaluate
message robustness of open source BPEL engines. First, we
propose a method to evaluate the message robustness of
BPEL engines in Section IV-A. In Section IV-B, we describe
the experiment to validate our proposed method and present
its results in Section I'V-C. Finally, we discuss the findings
and threats to validity in Section IV-D.

A. Method

To evaluate message robustness properties of a BPEL
engine, we propose to observe the runtime behavior of
instances of robust processes that interact with faulty partner
services and determine whether the process instances are able
to react upon the faulty response of the partner service. We
define this kind of message robustness as backdoor message
robustness as the faults are injected as response of an external
third party service. This is in contrast to frontdoor message
robustness in which the faulty messages are sent directly
as requests to an existing instance or creating a new one.
Robust processes use fault handling and validation constructs
available in the process language which would achieve fault
tolerance when executed on a robust engine. Hence, we
propose to create a process for each of those constructs to
evaluate the actual message robustness capabilities of each
of those constructs of an engine. In addition, the partner
services have to be configured to respond with faults that are
suitable to reveal message robustness issues. We propose to
create false responses systematically for each of the layers.
Moreover, the false responses are created by applying one
mutation to the correct response to test each fault in isolation



of each other. A test case is the combination of using a robust
process with a specific fault handling construct that needs to
handle a specific faulty response on a specific engine. When
a fault is handled by at least one robust process, the engine
is considered robust regarding this faulty response. Upon this
data, we can derive message robustness properties per layer.

Valid Response SOAP

Mutation
apply |

Message Layers
TCP, HTTP,
SOAP, CUSTOM

derive

Fault with #fid

fid BPELEngine #fid
. —id oI Robust BPEL L5 inzsle
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processes €« #fid > fault
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Test System o Virtual Service
betsy BPEL activities Parasoft Virtualize
catchAll
validate
Figure 2. Big Picture

1) Big Picture: The big picture of the test architecture
of this method is shown in Fig. 2 and comprises three
components (black boxes) and their configuration (gray
boxes): the test system betsy which requires the list of all
fault ids, BPEL engine under test onto which the robust
processes need to be deployed and the virtual service build
with Parasoft Virtualize which has to be parametrized with
the request-response mappings or pairs of the fault id and the
corresponding fault. The orange arrows denote how the robust
processes and how the faults and their fault ids (#fids) are
created. The robust processes are created by using activities
from the process language that enable fault handling and
error recovery. In contrast, the creation of the faults requires
multiple steps. First, for each specification of each message
layer, mutations are derived on how to change a valid message
to an invalid one. Second, these mutations are applied to a
normative valid response. Third, each fault is assigned an
identifier, a fault id, that corresponds to the fault, making up
a request-response pair. The black arrows mark the message
flow per test execution between the components. A test case
is initiated by the test system by sending a fault id to a
deployed robust process and observes the response which is
used to determine the message robustness. The virtual service,
however, responds to requests of the process instances by
returning the fault corresponding to the sent fault id.

2) Robust Processes: We use two robustly designed
processes, one being an extension of the other, based upon
the process stub from [8, p. 4]. They are shown in Listing 1
and presented in pseudo code that uses indentation to denote
hierarchy, marks BPEL activities as bold and dollar prefixes
variables. Line 6 and 15 represents the receive-reply
pair to observe the behavior of the scope encompassing
the lines 7 to 14 in which the faulty partner service is
called synchronously using the invoke activity and then
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sets the Sresult variable to NO_FAULT. To the scope
itself, a catchAll fault handler is attached which sets the
Sresult variable to FAULT in case it catches any fault.
The catchAll activity is specified “to catch any fault not
caught by a more specific fault handler” [3, p. 128], hence,
it is the central point of creating a robust and fault tolerant
process as it allows reacting upon an error. By checking the
contents of the $result variable after process completion,
we can observe whether the catchAl1l activity is executed
at runtime or not, and consequently determine whether the
engine was able to react upon the simulated error or not.
The second robust process (RP#2) extends the first robust
process (RP#1) by validating the received response against
its XSD definition with the validate activity in line 13.
This is an additional robustness instrument to ensure that the
incoming message is validated against its XSD definition,
independent of the engine which may or may not validate
the incoming message against its XSD definition.

Listing 1. Robust BPEL Process #1 and RP#2

process
imports
partnerLinks
variables $id, $result, S$response
sequence
receive $id
scope
faultHandlers
catchAll
assign FAULT to S$result
sequence
invoke faulty service synchronously by sending $id
and wait for S$response
[only RP#2: validate Sresponse against schemal]
assign NO_FAULT to S$result
reply S$result

The activities of RP#1 are widely used in real world
process. According to [2], “more than 70% of [real world]
processes contain fault handlers” [2, p. 7] as well as “invoke,
sequence, assign and receive occur in more than 93% of
processes” [2, p. 7]. The validate activity of RP#2 is not
used in any of the real world processes stated in [2], hence,
indicates that this countermeasure is not widely applied.

While there is the catch activity as well to handle a
single and specified fault, we cannot apply this activity as
in our experiment we want evaluate the ability to catch
undefined and unspecified faults, i.e., no predefined SOAP
faults. The processes are considered robust as they try use
fault handling logic to cope with an erroneous response by
themselves without intervention of an administrator.

3) Test Suite: A test suite is a collection of test cases that
are intended to be used to test a software program to verify
that it has some specified set of behaviors. Hence, to verify
whether the five BPEL engines under test have a satisfying
degree of message robustness, we created 75 test cases which
are shown in Table I. The test cases are structured according
to the layers in which an error may occur, being either on the
lowest level (3 faults), in the HTTP header (40 faults), in the



XML-based SOAP envelope (21 faults) or in the application
specific part within the SOAP body (11 faults). Apart from
the layer, the tests do have an additional type depending on
which specification is used to derive the faults from. The
tests have been created manually.

TCP Test Cases: The three test cases on the TCP layer
refer to not being able to resolve the DNS entry and having
either an unreachable or an non-responding host. These tests
are based on the faults defined in [13]. They are simulated
by changing the endpoint of the external partner service
according to the specific fault, and are therefore the only
three test cases that are not on the message level but on the
transport level.

HTTP Test Cases: For the HTTP layer, we solely created
tests for different status codes of the HTTP header by sending
the correct SOAP payload but only changing the status code.
As the first digit of the HTTP status code determines its
type, we subdivided them accordingly. Only the code 200 is
removed as this marks a correct response, or in other words,
these test cases are mutations of the valid 200 return code.

SOAP and APPDATA Test Cases: The tests from both
the SOAP and the APPDATA layer are encoded as mutations
of the valid SOAP response. The XML mutations, which
refer to the well-formedness criteria of XML, are solely at
the SOAP layer while we subdivided the XSD mutations,
which refer to the correctness against their XSD schema,
into the part referring to SOAP XSD schema and the XSD
schema of the application specific code. We extracted the
XML mutations out of the XML specification and grouped
our tests by bad names (4), unescaped symbols (5), unclosed
entities (4), structural errors (1) and root element issues (3).
For the XSD mutations, we permutated the operator action
(add, remove and change) and the operator target (namespace,
namespace prefix, element, content, attribute and text),
removed the meaningless combinations and created test cases
for the meaningful ones. The issue is, however, that not every
meaningful combination can be applied to both the SOAP
and the APPDATA variant as not every mutation makes sense.
Therefore, the SOAP XSD test cases are fewer than the ones
for the APPDATA layer.

B. Experiment

To validate our proposed method from Section IV-A, we
adopt the generic architecture of the method as shown in
Fig. 2 and applied it onto testing BPEL engines. We use
the BPEL engine test system (betsy) as the test system, five
different BPEL engines (see Section IV-B2), and Parasoft
Virtualize as our virtual service (see Section IV-B3).

For the experiment itself, we have set up a single machine
locally on which both betsy and the BPEL engines have been
running while Virtualize has been provided via an internet-
based virtual machine of an Infrastructure as a Service (IaaS)
provider.

1) BPEL Engine Test System (betsy): For the test exe-
cution, we adopted the open source tool betsy [41] for our
purposes'. Because of this, we can run the whole experiment
automatically as betsy installs, starts and stops the BPEL
engines as well as deploys the BPEL processes, tests their
behavior via soapUI® and creates detailed reports. In addition,
we get test isolation for free because betsy provides a fresh
instance of the engine under test for each test case by means
of virtualization [42].

2) BPEL Engines: In this experiment, we evaluate
the message robustness of five open source BPEL en-
gines: Apache ODE v1.3.5, bpel-g v5.3, Orchestra v4.9,
Petals ESB v4.1 and OpenESB v2.2. All of these engines
are implemented in Java and run on either a light-weight
servlet container, e.g., an Apache Tomcat, or an enterprise
service bus (ESB), e.g., the Glassfish Application Server.
These engines are suitable to evaluate our method as they
use various Web Service stacks as well as ship their very
own BPEL engine implementation.

3) Virtual Service: To inject faulty messages into our
BPEL processes, we created a virtual service with Parasoft
Virtualize v9.6 [37], a proprietary software product that
can create, deploy, and manage simulated test environments
mainly for purposes of software development and testing.
To set up the virtual service, we created a Virtual Asset,
i.e., an invocable and simulated web service, that for
predefined request parameters (fault id or #fid for short)
returns predefined faulty responses (faults). All different
types of faults that we simulate are shown as part of Table I.
As the fault ids are only technically, we omitted them from
the tables.

C. Results

The results of our experiment are shown in Table I. Each
row represents either a single test case or multiple test cases
with the same results. The rows themselves are grouped
hierarchically depending on the layer and the type of the
mutation. Cells within each row mark the result of this test
case of a specific engine, which can either be + (robust;
process can react upon the error), T (timeout), R (regular
response) or Ry (regular response for RP#1, robust for RP#2),
which is observed from the test system.

The baseline test case that uses the valid response as well
as a valid SOAP fault execute correctly on all five engines
under test for the RP#1. But as not every engine supports
the validate activity according to [8], this does not hold
for the robust BPEL process #2. Therefore, we present the
results of the RP#1 while the results regarding RP#2 are
shown as subscripts in case the validate activity was able
to achieve a more robust test result. For this experiment, only
OpenESB has any gains when using the validate activity.

'Source code: https://github.com/uniba-dsg/betsy/tree/ase2014
Zhttp://www.soapui.org/
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1) TCP layer: The observed engine behavior for this layer
is to time out, except for bpel-g and OpenESB which can
handle unresolvable DNS issues.

2) HTTP layer: Regarding the HTTP layer, we test the
different status codes of the HTTP header. There are three
ways an engine handles faulty status codes, it correctly raises
a catchable exception (+), it times out (T), or it ignores
the header data and carries on using the HTTP payload
(R). The status code tests are grouped using the first digit

of the status code, namely, 1xx, 2xx, 3xx, 4xx and 5xx.

For 1xx status codes, only OpenESB reacts as expected,
while the other engines time out, except for Orchestra which
ignores the status code 101. For 2xx status codes, all engines

fail to respond correctly, except bpel-g for status code 204,
OpenESB for status code 202 and 204, and Orchestra for 204
status code. For 3xx status codes, bpel-g and OpenESB react
as expected except for a 300 which is ignored in OpenESB.
Apache ODE and Petals ESB time out, and Orchestra always
ignores the status code except for a 304 which it handles
correctly. For 4xx codes, bpel-g and OpenESB detect all
the faults whereas Apache ODE, Orchestra and Petals ESB
always time out except for status code 400 which is ignored
by Apache ODE and Petals ESB. No engine handles 5xx
status codes correctly. bpel-g and OpenESB ignore the status
code while the other three engines time out. An exception
is status code 500 which all engines ignore. The engines
clearly violate the SOAP specification, as it states that the
return code 500 must only be used for SOAP faults and not
for normal SOAP messages [43, section 6.2]. Overall, the
behavior of both Apache ODE and Petals ESB is identical
for all status codes, hinting to the fact that they used the
same library for handling such codes. Orchestra has the same
behavior for the 5xx and most of the 4xx tests. In comparison,
bpel-g and OpenESB share quite the same behavior as well,
only the four status codes 100, 101, 202 and 300 out of the
41 (approx. 10 %) are handled differently, hinting at the fact
that they used the same library slightly differently.

3) SOAP layer: For SOAP XML content, the results vary
substantially. Only OpenESB handles all test cases correctly,
while both Apache ODE and Petals ESB fail in all cases.
It is interesting to note that both bpel-g and Orchestra may
either succeed or return a regular response for each test, but
never time out. In fact, they almost have the same pattern,
except for three cases (two root elements, unclosed element
and name starts with XML), in which Orchestra returns
regular responses instead. Apache ODE and Petals ESB either
respond with a timeout or regular response. Interestingly,
both Apache ODE and Petals ESB time out for all the
cases in which there is a malformed name in the XML
file. Overall, there are no tests which are handled equally
on all engines, but there are multiple test cases in which
the fault is ignored, especially within the test case group for
unescaped symbols, marking an area which seems to be more
problematic than other SOAP XML test cases. In addition, the
other remaining tests that return a regular response may have
automated corrections built into the XML parsing libraries,
e.g., removing a second root element while parsing. For
SOAP XSD content, bpel-g and OpenESB respond correctly
for all XSD mutations, Orchestra times out only for one
test case (remove element), while Apache ODE and Petals
ESB time out for all the cases. To sum up, these test cases
are handled either correctly are with a time out, no regular
response is given.

4) APPDATA layer: bpel-g succeeds in every test except
for the add element test case, in which a regular response is
returned. Apache ODE and Petals ESB did not return any
correct response, they either time out or return a regular



response. For the test cases change int to string, double
or localized double, and add of element, attribute or text

between elements, both engines only return regular responses.

Orchestra responds with a regular response for all the cases
except for addition and removal of an element, in which
case it times out. The only test Orchestra is able to detect
is unbound namespace prefix. OpenESB is special in this
context, as five of the cases of the test run with process #1
return correct responses and the other six return the wrong
regular responses. However, when rerunning these failed
test cases with the second process, four test cases (remove
content, change int to string, change int to localized double
and add attribute) are now succeeding and marked with (R.),
i.e., the validate activity had an impact for these tests.

D. Discussion

In this section, we provide an overall BPEL engine com-
parison in terms of message robustness (see Section IV-D1)
followed by a discussion of possible threats to validity of
our approach (see Section IV-D2).

1) Engine Comparison: The overall and aggregated results
are shown in Table II. For each of the four layers, the
percentage of the number of successful tests subdivided
by the total number of tests per layer is given for the robust
BPEL process #1 of the five BPEL engines. As the robust
BPEL process #2 could only improve the message robustness
results of OpenESB, these percentages are shown in the last
column marked with an asterisk. The numbers show clearly
that both Petals ESB and Apache ODE do not handle any
of our test cases robustly while the remaining three handle
the errors quite differently ranging from 5% up to 100%.
Orchestra always performs worse than bpel-g and OpenESB
in any of the layers. In contrast, OpenESB always performs
best when looking at the TCP (33%), HTTP (73%) and the
SOAP (100%) layer, but cannot compete with bpel-g in terms
of APPDATA message robustness (45% vs. 91%). However,
when using RP#2, OpenESB is able to react upon 82% of
the APPDATA test cases, and closes up to bpel-g in this
layer. Consequently, OpenESB and bpel-g seem to be the
most robust BPEL engines of the five we evaluated, while
OpenESB is more robust than bpel-g according to our test
results. Nevertheless, we do not create an overall ranking
as the number of test cases vary greatly and computing an
overall percentage would yield a meaningless value.

2) Threats to Validity: The threats to validity of our
experiment can be subdivided into issues regarding the test
cases, the robust processes and engines under test. The
execution of the experiment itself has been fully automated
while the creation of the test cases was done manually.
Especially the implementation of the SOAP and APPDATA
test cases required manual modeling of errors. To reduce as
many flaws in these tests as possible, we applied a peer-review
of the tests itself by the authors and an XML tool xm1lint
for both well-formedness and schema compliance checks

Table II
ROBUSTNESS DEGREES PER LAYER AND ENGINE

Engine
2
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® | 5 e 8 @ e
o) g 2 S 5] Q
2. =9 j=3 =1 51 =9
Layer kS < o o 9 o
APPDATA | 91% | 0% 45% 9% 0% 82%
SOAP 86% | 0% 100% | 67% | 0% 100%
HTTP 68% | 0% 73% 5% 0% 73%
TCP 33% | 0% 33% 0% 0% 33%

to ensure that each test case encompasses exactly its single
introduced fault. The robustly designed BPEL processes only
make use of the forward error recovery activities. Still, our
experiment shows that our method is on the right track, but for
a more extensive study, we aim to evaluate the effectiveness
of the backward error recovery activities as well, especially
in the case when forward error recovery fails to work, i.e.,
building upon the results of the experiment in this work. In
our experiment, we evaluated five open source BPEL engines.
While we used the latest version of Orchestra and bpel-g, we
only used the next-to-last version of Apache ODE, OpenESB
and Petals ESB. As this experiment only proofs the feasibility
and usefulness of our robustness evaluation method, it is not
necessary to conduct the study with the most recent version.
Additionally, the engines under test in the experiment are
all open source, not taking proprietary engines into account
which are often considered to be more mature and robust. As
these open source ones are used in production as well, they
still make up as a relevant set of targets in our experiment,
leaving the comparison of open source and proprietary ones
for future work.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a robustness framework defining
the relevant robustness criteria for BPEL engines. As part of
a case study, we presented a method to evaluate backdoor
message robustness of BPEL engines via an experiment with
five open source engines. The results reveal that the engines
do have issues when receiving erroneous messages, leading to
a lot of manual intervention for their operators. On OpenESB,
few issues can be mitigated by leveraging the validate
construct of BPEL in the process itself after receiving the
messages.

Future work comprises the creation of an approach for all
robustness criteria, taking proprietary engines into account,
and applying this robustness approach onto BPMN [4]
engines as well.
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