
BPEL Conformance in Open Source Engines

Simon Harrer, Jörg Lenhard and Guido Wirtz
Distributed Systems Group

University of Bamberg
Bamberg, Germany

{simon.harrer,joerg.lenhard,guido.wirtz}@uni-bamberg.de

Abstract—More than five years have passed since the final
release of the long-desired OASIS standard of a process
language for Web Services orchestration, the Web Services
Business Process Execution Language (BPEL). The aim of
this standard was to establish a universally accepted Web
Services orchestration language that forms a core part of
service-oriented architectures and, because of standardization,
avoids vendor lock-in. By now, several fully conformant engines
should have arrived in the market. It is our aim to shed light
on this situation and to provide a comprehensive picture of the
current state of BPEL support. We present an evaluation of
the standard conformance of five open source BPEL engines.
To obtain these results we have developed betsy, a tool that
allows for a fully-automatic standard conformance testing of
BPEL engines. The results demonstrate that full standard
conformance in contemporary engines is still far from given.

Keywords-BPEL, engine, conformance testing, orchestration

I. INTRODUCTION

The BPEL specification [1] defines a language that can
be used to build stateful Web Services that take part in long-
running interactions. It allows to define control- and data-
flow dependencies between the invocation of other services
in a process-like manner, thereby orchestrating the services
[2]. Process definitions built in the language can be executed
on an engine that implements the specification. Being an
open standard, BPEL is intended to provide portability of
process definitions among multiple engines. BPEL is widely
accepted as a core part of Web Services-based service-
oriented architectures (SOAs) [3].

An area where BPEL typically is of relevance is service-
based business-to-business integration. Here, it is neces-
sary to integrate processes that are executed by several
autonomous partners [4]. Scientific approaches try to tackle
this problem with a combination of choreography and or-
chestration models [2]. A choreography model specifies a
communication protocol between the different partners from
a global point of view, an orchestration model, defined
in BPEL, implements a partner-local process. The overall
protocol can be implemented by translating the global model
into several local orchestrations (top-down), see for example
[5], [6], [7], [8], or by constructing the global protocol from
preexisting orchestrations (bottom-up), as in [9]. All these
approaches make heavy use of BPEL and implicitly assume

that fully conformant engines will be available one day. If
this premise is not fulfilled, they unleash their full potential
and benefit only in theory. Standard-conformance in BPEL
engines is also a critical enabler for the portability of process
models and the avoidance of vendor lock-in, two of BPEL’s
main promises.

In this paper, we investigate the degree of today’s standard
conformance for BPEL. Specifically, we investigate the mar-
ket of open source BPEL engines, namely the five engines
Apache ODE, bpel-g, OpenESB, Orchestra, and Petals ESB.
To assess their standard conformance, we have implemented
the tool betsy. Betsy is open source and documented in
[10]. This tool comprises a BPEL conformance testing
suite, leveraging a set of almost 130 process definitions
that define conformant behavior, and allows for the fully
automatic assessment of the standard conformance of BPEL
engines. Thereby, we are able to measure, in a fashion that is
comparable among multiple engines, the degree of standard
conformance provided by an engine and can determine
which parts of the standard are not implemented. When
selecting an engine, practitioners can consider these results
together with other crucial characteristics, such as scalability
and performance properties, for making their choice.

This assessment shows that there are several major short-
comings in the BPEL support for all engines under test.
As a consequence, process definitions are tightly coupled to
their execution platform and porting such definitions from
one engine to another can be considered a daunting task.
For the scientific approaches (cf. [5], [6], [7], [8]) it implies
that they are also linked to the platform for which they have
been tested and cannot, generally, be assumed to work on
any platform.

The next section discusses related approaches and delin-
eates our work from other approaches on testing BPEL.
Thereafter, we explain the environment and structure of our
testing setup. Sec. IV presents and discusses our results.
Sec. V summarizes the paper and proposes future work.

II. RELATED WORK

The testing of BPEL has received some attention so far1,
and concentrates on (i) unit testing of executable BPEL

1A comprehensive overview of academic approaches to web service
testing is given in [11]. A subset of these approaches applies to BPEL.



processes, (ii) conformance checking of BPEL processes to
a certain specification or formalism, and (iii) performance
testing of BPEL processes or engines. The testing of the
standard conformance of BPEL engines is still an open
question, however.

Basically, our work builds on unit testing approaches and
shares the aspect of testbed generation with performance
testing approaches. It differs from conformance checking
approaches in the system under test, being the middleware in
our case and concrete process models for other approaches.
To the best of our knowledge, no other conformance assess-
ment of BPEL middleware can be found yet.

The area of unit testing BPEL processes is one that
received considerable interest, but even here more work is
called for [12]. In this area, the BPELUnit project [13] is
most widely accepted. BPELUnit allows for the construction
of unit and integration tests for BPEL processes that run on
specific engines. The aim of BPELUnit, and related unit test-
ing approaches for BPEL, is to test and verify the correctness
of specific BPEL processes. Here, we aim at the testing the
conformance of BPEL engines; that is, the systems under
test are different. Our tool is similar to BPELUnit in the
manner that it allows for the automatic deployment of BPEL
processes and execution of test cases for these processes
for specific engines. In fact, betsy internally uses a unit
testing framework, soapUI2, to automate the test execution
and reporting, and builds its conformance testing workflow
on top of that.

Conformance checking of BPEL is generally not under-
stood as the testing of the conformance of a BPEL engine
to the BPEL specification, but refers to the verification of
the behavioral properties of a concrete BPEL process. For
instance, it is verified that a concrete BPEL process behaves
as specified by (conforms to) an abstract process model.
Examples of approaches using this type of conformance
checking are [14], [15], [16], [17], [18]. Here, we do not
focus on approaches for verifying behavioral conformance
of concrete process models, but instead on implementation
conformance of the middleware to the standard specification
in the sense of [19, pp. 203-208],[20]. That is, a conformant
implementation of the BPEL standard is an implementation
that satisfies both, static and dynamic, conformance require-
ments explicitly defined in the specification [1].

The main approaches in the area of performance testing
of BPEL engines are SOABench [21] and GENESIS2 [22].
Both essentially are testbed environments that can be used
to generate testbeds for complex service-oriented systems.
Whereas GENESIS2 is directed at service-oriented systems
in general, SOABench is specifically aimed at the testing and
analysis of the performance characteristics of BPEL engines.
Each tool defines a domain model to automatically generate

2soapUI is a unit testing framework not specifically attached to BPEL,
but to Web Services in general. For more information, see http://www.
soapui.org/.

and execute test cases and provides a plugin mechanism
to extend the execution environment with new engines.
As we address BPEL, our domain model has a larger
intersection with that of SOABench than with GENESIS2.
However, SOABench’s model is more complex than that of
betsy which is necessary to get a more fine-grained control
of the testing environment. This in turn is a prerequisite
for gathering performance metrics. As betsy is directed at
conformance testing and not performance testing, it has no
such requirements. Finally, whereas SOABench comes with
four BPEL process definitions that are aimed at testing the
performance and scalability of an engine, betsy comes with
a set of almost 130 processes that have the aim to assess the
standard conformance of an engine. Moreover, betsy natively
supports five engines instead of three.

A completely different approach of achieving BPEL con-
formance is based on formalizing the operational semantics
and deriving an implementation of these semantics. This idea
and the semantics are outlined in [23].

To sum up, our work builds on unit testing and testbed
generation approaches for BPEL and adds the layer of
conformance assessment on top. To date, no such com-
prehensive conformance evaluation can be found. Our tool
implementing the conformance assessment is open source
and documented in [10].

III. TESTING SETUP AND ENVIRONMENT

Our testing setup consists of a testing tool that is capable
of installing, deleting and communicating with a variety of
BPEL engines, and a suite of engine-independent confor-
mance test cases. The test engine instruments these test cases
to produce engine-specific deployment artifacts for every test
case and executes these artifacts for all engines. To assure the
quality of the test cases, they have been validated using the
XSD files from the BPEL 2.0 specification, have been peer–
reviewed in our group, and are publicly available for scrutiny
and improvement. Finally 95% of the tests are passed by at
least one engine which indicates that the process definitions
are correct. This section describes the engines under test,
the tool, and the structure of the test cases.

A. Engines under Test

All engines we investigate are open source and freely
available. They are rated as mature projects by their respec-
tive distributors and are actively maintained.

Apache ODE: Today, Apache ODE3 is the most well-
known and most widely used open source BPEL engine. It
is incorporated in various open source enterprise services
buses (ESBs). The revision used in the tests is ODE 1.3.5.

bpel-g: The bpel-g engine is a derivate of the former
ActiveBPEL by Active Endpoints. Whilst ActiveBPEL is
no longer provided, bpel-g is still under development as a

3The project page is available at http://ode.apache.org/.



Google Code project4. The engine comprises the functional-
ity provided by ActiveBPEL. Our work uses the 5.3 snapshot
of bpel-g, being the most recent version available at the time.

OpenESB: The OpenESB is an open source ESB that
includes a BPEL engine. It is was maintained by Sun pre-
ceding Sun’s acquisition by Oracle. OpenESB is commonly
collocated with the Glassfish application server to form a
full enterprise integration solution. The project homepage is
http://openesb-dev.org/ and the version used here is 2.2.

Orchestra: Orchestra is developed by the OW2 consor-
tium and available at http://orchestra.ow2.org/. It executes
BPEL processes on a generic process virtual machine. We
analyze Orchestra 4.9, being the most recent stable revision
at the time of writing.

Petals ESB Petals ESB is an open source ESB that in-
cludes a BPEL engine. It is available at http://petals.ow2.org/
and is developed by the OW2 consortium, just as Orchestra.
Instead of reusing Orchestra as a BPEL engine, Petals ESB
provides a separate engine, namely EasyBPEL5. In the tests,
we use EasyBPEL 4.0.

B. The Tool betsy

The testing engine derives its name, betsy6, from BPEL
Engine Test System. It is open source, developed in Groovy,
and makes extensive use of Ant and soapUI. It comes with
a domain model for representing test cases and engines and
executes these test cases in a conformance testing workflow.
This section sketches the domain model and the testing
workflow.

Figure 1. Betsy’s Domain Model

The domain model is depicted as a UML class dia-
gram in figure 1. The key elements are the Process
and the Engine classes. A Process references engine
independent BPEL, WSDL, XSD and XSLT definitions
that encapsulate a single feature of BPEL. This is the
basis for a single conformance test. An Engine defines
methods for managing a concrete engine instance and for
deploying process definitions to that instance. This class
has to be extended for each engine under test. The tool
can be extended to support additional engines using solely

4The project can be found at http://code.google.com/p/bpel-g/.
5Its documentation can be found at http://research.petalslink.org/display/

easybpel/EasyBPEL+Overview. For brevity, in the rest of the paper we refer
to this engine as Petals ESB.

6The project homepage is https://github.com/uniba-dsg/betsy/tree/
soca-2012. Betsy’s functioning is documented in a technical report [10].

this class. For each process, a set of TestCases, con-
sisting of several TestSteps that are verified through
TestAssertions can be defined. A TestCase verifies
that a sequence of synchronous or asynchronous message
exchanges (TestSteps and WsdlOperations) is cor-
rect for a specific BPEL Process. On execution, betsy
links all Processes with all Engines in a TestSuite
and executes all resulting tests sequentially. A TestCase
passes if all its TestSteps have passed and a Process
(e.g. a feature of BPEL) is supported if all its TestCases
have passed. If at least one, but not all, TestCases fail,
the feature is partially supported. The correctness of a
TestStep is asserted by evaluating the content of response
messages, if there are any. Altogether, betsy comes with
almost 130 Processes and related TestCases.

The testing workflow is depicted in figure 2. The work-
flow divides into setup, tear down and test execution
phases. Prepare Folders marks the setup phase and
Generate Reports the tear down phase and both are
being executed exactly once, before and after the test execu-
tion phase, respectively. The test execution phase takes place
per engine and per process (per test case) and is repeated
strictly sequential. This avoids any side-effects that could
occur through parallel tests. Due to the number of engines
and processes, it is repeated approximately 650 times.

The setup phase prepares the file system for the upcoming
test run, deleting and rebuilding the required folder structure.
The test execution phase divides into a sequence of substeps.
First, the engine independent BPEL, WSDL, XSD and
XSLT files are transformed into engine specific files and
are packaged into a deployable archive (Generate BPEL).
Additionally, deployment descriptors are generated based
on the BPEL and WSDL files using XSL transformations
and are included within the deployment archive. Second,
each TestCase is transformed into a corresponding soapUI
project configuration (Generate Test). Third, the engine
that is to be tested is installed and started (Install
Engine and Start Engine). This involves the deletion
of a previously installed instance of the engine, followed
by its download (if needed), extraction and configuration.
The complete reinstallation of an engine for each test
ensures that there are no side-effects on a test through a
previous test. Fourth, the previously created deployment
archive is deployed onto the engine (Deploy BPEL). This
is achieved via hot deployment or API calls, depending on
the engine under test. Fifth comes the actual test execution;
that is the transmission of SOAP messages to the processes’
endpoint and the evaluation of the responses (Execute
Test). The message transmission is performed by soapUI
by executing the project configurations defined in step two
of the test execution phase. The test results and messages
exchanged are stored for later evaluation. Last, the engine
is stopped and the test execution phase is repeated for the
next test. After all tests have been executed, the tear down



Figure 2. Test Process Workflow.

phase (Generate Reports) takes place. In this phase,
the results are aggregated and HTML reports visualizing
them are generated. This enables the user to drill down
from a high-level result overview to the detailed messages
exchanged by engine and process for each test.

C. Conformance Test Cases

This section provides a more detailed outline of the
structure and configuration of the test cases used to assess
BPEL standard conformance. Each conformance test case
describes a specific feature of BPEL in relative isolation. A
test case is subdivided into a test case definition and a test
case configuration. The definition comprises BPEL, WSDL,
XSD and XSLT files. The configuration consists of instances
of Processes and TestCases of the domain model (cf.
section III-B) referencing the files of a test case definition.

The test cases are derived from the requirements defined
in the BPEL specification [1] using the notational conven-
tions [24] (i.e. MUST, MUST NOT, etc.). Specifically, we
provide multiple process definitions to test every activity,
attribute and almost every fault that is part of executable
BPEL. All test cases are classified into three groups:

basic-activities: This group contains test cases for every
basic activity of BPEL [1, pp. 84–97]. This includes the
invoke, receive, reply, assign, throw, wait,
empty, exit, validate, and rethrow activities, as
well as faults related to them.

structured-activities: The second group comprises struc-
tured activities [1, pp. 98–114]. This includes sequence,
if, while, repeatUntil, pick, flow, and forEach
activities. Again, faults related to these activities belong to
this group as well.

scopes: Although being structured, scopes [1, pp.
115-147] are treated separately. The last group con-
tains tests for scopes, fault-, compensation-,
termination-, and eventHandlers. Furthermore, the
scope-local definition of variables, partnerLinks,
messageExchanges and correlationSets is also
investigated here.

Every test definition implements the same WSDL inter-
face to enable a unified handling of tests. The interface is
intended to be as simplistic as possible, to ensure that all
engines support it, whilst being complex enough to test all
features of BPEL. It contains a partnerLinkType and
several message definitions, with all messages containing
a single message part of the type integer. Thereby, we

avoid problems that result from the processing of large
documents, as it is not our intention to assess XML pro-
cessing capabilities here. The portType is made up of
two operations, namely (i) a synchronous one that may also
reply with a fault and (ii) an asynchronous one. The binding
for these operations is the most basic and plain one available,
thereby having a high probability of being supported by
every engine: document/literal style over HTTP [25, Sec.3].
We also provide a similarly structured WSDL definition for,
and an implementation of, a partner service that is required
to test invoke activities.

The tests for a specific feature of BPEL are not strictly
isolated, which is also no requirement for conformance tests
[19, pp. 203-208]. Some features are not testable in isolation,
such as faultHandlers that require a fault to be thrown
in the first place. Furthermore, to verify the correctness
of a test, it is necessary to have an output available that
can be evaluated. Consequently, all process definitions we
use as conformance tests contain certain elements and most
do contain synchronous operations. Listing 1 outlines the
general structure that applies to most tests. The activities
therein with their specific configuration could be verified to
be supported by all engines, so they do not influence the
results of other tests.

Listing 1. Outline of the Process Definitions
<process>

<partnerLinks />
<variables />
<sequence>

<receive />
<!−−T e s t i m p l e m e n t a t i o n−−>
<assign />
<reply />
<!−−More t e s t i m p l e m e n t a t i o n , i f message

exchanges are i n v o l v e d−−>
</sequence>

</process>

All the engine independent files described before are
referenced in a test configuration. This configuration is built
according to our domain model (cf. section III-B); that is, a
Process links to all the files for a given test.

Three areas required for executable BPEL are not com-
pletely specified and remain a design-choice for an im-
plementor of the standard. This is the exact structure
of a partner reference, necessary for the assignment of
partnerLinks, the URI scheme used to identify XSL
stylesheets and the behavior of the engine if a fault is
propagated to, and not handled by, the root-level scope of a



process that still has open request-response interactions. We
decided to use WS-Addressing EndpointReferences
[26] (encapsulated in BPEL’s service-ref container)
as partner references and identify XSL resources by their
filename. This implies that an engine that supports dynamic
binding, but not with EndpointReferences, will fail
our test case. Concerning fault propagation we test for the
mechanism applied by basically any high-level programming
language, such as Java or C#, which is also a prerequisite
for distributed fault handling [27]: We expect an uncaught
fault at root-level to be forwarded to the recipients in open
request-response operations.

IV. TEST RESULTS

The results listed here originate from a run of the complete
test set for all engines7. The execution of this run took
approximately 10 hours. Figure 3 provides an overall picture
of the run. The results for every engine are given either in
total (

∑
) or subdivided in the three test case groups basic

activities (BA), scopes (S), and structured activities (SA).
Each column contains the amount of successful, partially
successful, and failed tests. An overview of the amount of
successful test cases per activity and engine is given in
table I. A detailed description of every single test case can
be found in our technical report [10].

As depicted in figure 3, the engine with the highest
amount of successful tests, and, therefore, ranking highest
when compared to the other engines, is bpel-g. Apache ODE
and OpenESB are ranked second and third with a number
of 86 and 84 successful tests, respectively. Orchestra comes
fourth, passing less than half of the total amount of tests,
followed by Petals ESB which passes only about one quarter.

Still, bpel-g fails 20% of the total amount of test cases
followed by 33% and 34% for Apache ODE and OpenESB,
respectively. The fact that every engine fails a double-digit
percentage of the test cases means that no engine is nearly
completely conformant to the standard. Except for Petals
ESB, the highest degree of failed tests can be diagnosed for
basic activities as shown in figure 3.

A. Engines

In this section, we briefly discuss important findings for
each of the engines.

Results for bpel-g: As previously stated, bpel-g has
the highest number of successful tests and consequently
the highest conformance rating. In comparison to the
other engines, it especially stands out in fault handling;
that is, the faults that are expected to be thrown in a
given situation, are also thrown by bpel-g. Still, bpel-g’s
fault handling is not complete. Furthermore, bpel-g is the
only engine to support dynamic partner binding with WS-
Adressing EndpointReferences (i.e. it is the only

7The resulting data set can be downloaded at https://github.com/
downloads/uniba-dsg/betsy/test-results-soca-2012.zip.

engine that was able to assign an EndpointReference
to a partnerLink and afterwards invoke the new end-
point correctly). Its main disadvantage is the lack of sup-
port for timing activities. The use of xs:dateTime and
xs:duration in until or for elements is not supported
and wait and onAlarm activities do never complete.
Moreover, terminationHandlers are not supported as
well. It has, however, the highest support for structured
activities failing only four tests in this group.

Results for Apache ODE: Apache ODE is positioned
second in the ranking of the different engines. Many pro-
cess definitions are not deployed, because ODE detects
the use of activities that are known to be unsupported in
this engine. For instance, this applies to process defini-
tions that use toParts or fromParts elements, or the
doXslTransform XPath function. In-process validation,
using either the validate activity or the validate at-
tribute in the assign activity, is unsupported. Furthermore,
any terminationHandlers are ignored, too.

Results for OpenESB: OpenESB ranks third, but close
up to rank two. It excels in the test cases of the scope group
where it provides the highest degree of support. For the
other two groups, however, some deficiencies can be found.
OpenESB ignores links within flow activities. Instead,
OpenESB executes the activities in a flow in the order
of their definition. Furthermore, the parallel attribute of
the forEach activity and to- and fromParts are not
supported. In contrast to nearly all other engines, OpenESB
does support terminationHandlers.

Results for Orchestra: With the amount of failed tests
exceeding the amount of successful ones, Orchestra is posi-
tioned fourth. As can be seen in figure 3, Orchestra’s support
for structured activities is nevertheless comparable to that
of Apache ODE and OpenESB. However, concerning the
tests for basic activities and scopes, Orchestra falls behind.
One reason for this is Orchestra’s fault handling strategy,
an aspect where it differs from all other engines under test.
Orchestra never propagates faults to the caller in a request-
response operation, unless this is explicitly requested in a
reply activity. If a process instance does not handle a
fault and there are still open request-response operations,
Orchestra replies with an HTTP 200 OK status code. This
leaves the caller clueless about the fact that a fault occurred
or which fault occurred, which severely hampers distributed
fault handling [27]. For this reason, Orchestra also fails all
tests for the throw and rethrow activities (see table I).
Moreover, the forEach and the validate activity are
not supported at all. All test cases for the combination
of message correlation and asynchronous operations fail.
Nevertheless, Orchestra is one of the two engines supporting
terminationHandlers.

Results for Petals ESB: The last place in the rank-
ing of the engines is taken by Petals ESB. It fails more
than 75% of the test cases which indicates only min-



Figure 3. The number of successful, partially successful, and failed tests per engine and activity group.

Table I
NUMBER OF SUCCESSFUL TEST CASES OF EVERY BPEL ACTIVITY FOR EACH ENGINE

Group Activity bpel-g Apache ODE OpenESB Orchestra Petals ESB total tests
basic activities Assign 13 10 11 8 6 18

Empty 1 1 1 1 1 1
Exit 1 1 1 1 1 1
Invoke 8 6 3 7 4 11
Receive 4 3 1 1 1 5
ReceiveReply 8 5 5 5 1 11
Rethrow 3 2 1 0 0 3
Throw 5 5 4 0 0 5
Validate 2 0 2 0 0 2
Variables 3 2 2 1 1 3
Wait 1 3 3 2 1 3

scopes Compensation 5 4 5 2 0 5
CorrelationSets 2 2 1 0 0 2
EventHandlers 3 7 6 4 0 8
FaultHandlers 6 6 6 2 5 6
MessageExchanges 3 1 1 1 0 3
PartnerLinks 1 1 1 1 0 1
Scope-Attributes 3 2 3 1 2 3
TerminationHandlers 0 0 2 2 0 2
Variables 2 2 2 2 0 2

structured activities Flow 9 9 2 7 0 9
ForEach 8 2 9 0 1 10
If 5 4 4 4 4 5
Pick 3 5 4 4 1 5
RepeatUntil 2 1 2 2 0 2
Sequence 1 1 1 1 1 1
While 1 1 1 1 1 1

imalistic support. As shown in Fig 3, for no activity
group the amount of successful tests is higher than 25%
of the total amount of tests for this group. Looking at
table I, 12 activities and features are not supported at
all. These are the flow, repeatUntil, validate,
throw and rethrow activities. On scope-level, the
definition of correlationSets, eventHandlers,
messageExchanges, partnerLinks, variables,
and compensation-, and terminationHandlers
are not supported. What is more, Petals ESB did not pass a
single test that involves message correlation.

B. Implications

With a close look at the results in table I, some patterns
can be identified. Every engine supports basic control-flow

constructs, in particular the sequence, if, and while
activities. Furthermore, basic facilities for enabling message
exchanges (invoke, receive, and reply activities) are
available in their simplest configuration along with support
for data handling using the from and to or literal
syntax in the assign activity. Moreover, the empty and
exit activities and basic support for fault handling using
faultHandlers, as long as either a fault is caught by its
name or all faults are caught, is in place. More advanced
features, such as graph-based control-flow definition, asyn-
chronous messaging and message correlation, concurrency,
compensation, or validation are far from ubiquitous. Process
definitions using these features are not portable among all
engines.



For instance, links are supported by only 3 out of 5
engines. Links are required to implement control-structures
forming directed acyclic graphs, and are the only way for
graph-based control-flow definition in the language. Graph-
based control-flow definition represents an important en-
hancement that is extensively used in approaches for the
transformation of higher-level process models to BPEL8.

Moreover, asynchronous messaging and message corre-
lation is a crucial enabler for the construction of long-
running processes. All five engines do support asynchronous
messaging. But only Apache ODE and bpel-g are able to
combine asynchronous messaging with message correlation.
Regarding synchronous messaging, the results show simi-
lar results as only Apache ODE and bpel-g fully support
correlation with synchronous messaging while OpenESB
supports this feature partially. Orchestra is only able to cor-
relate messages sent with asynchronous operations. Lastly,
message validation and terminationHandlers are only
implemented in two engines.

Considering the fact that BPEL is a completed standard
for more than five years, a higher degree of standard
conformance in contemporary engines could have been
expected. No single engine implements the complete (or
nearly complete) BPEL specification. Even the engine that
passes the highest amount of tests (bpel-g), fails about 20%
of the test cases.

Figure 4. Number of tests in correlation to the number of engines which
support them.

Incomplete implementations of the standard are not per
se a thread to the portability of the process definitions
running on those engines, as long as the engines implement
the same part of the standard. However, if each engine
implements a varying part, a loss of portability will be
the likely result. Figure 4 displays the number of tests
correlated to the number of engines that support a test. Only
19 of the 128 tests (15%) are commonly passed by all five
engines, whereas seven tests (5%) are failed by all engines.
The 19 successful tests assess the features described in the
beginning of this section. The seven tests that are failed by
all engines have been extensively peer–reviewed to reduce
the probability of human error in the process definitions. As
95% of the tests work on at least one engine, the overall test
suite can be considered to be valid.

8See for example [28] and the BPMN 2.0 standard [29] which uses links
for its transformation of BPMN to BPEL.

Table II gives a pairwise comparison of the amount of
successful tests shared by the engines. The number of test

bpel-g ODE OpenESB Orchestra Petals ESB
bpel-g - 75 70 48 28
ODE 75 - 67 48 27

OpenESB 70 67 - 44 27
Orchestra 48 48 44 - 24

Petals ESB 28 27 27 24 -

Table II
COMMON SUCCESSFUL TEST CASES PER ENGINE PAIR

cases supported by two engines ranges between 75 and 24.
Although bpel-g, Apache ODE and OpenESB pass 103, 86
and 84 tests respectively, the amount of pairwisely shared
successful tests is considerably lower, at 75, 70 and 65. This
is between 59% and 52% of the total number of test cases.
With the amount of commonly implemented features ranging
at this niveau, portability of process definitions is hard to
achieve among the engines.

V. CONCLUSION AND FUTURE WORK

In this paper we have examined the level of standard
conformance for the BPEL specification of the five open
source engines bpel-g, Apache ODE, OpenESB, Orchestra,
and Petals ESB. To meet this aim, we have developed the
tool betsy, a software for fully-automatic and comparable
standard conformance testing of BPEL engines. The test
set with almost 130 test cases covers the executable part
of BPEL.

The results demonstrate that the degree of BPEL confor-
mance is far from being exhaustive, despite the fact that
the BPEL specification has been finalized in 2007. BPEL
conformance ranges from 80% to 24% for the different
engines. Even the two engines with the highest amount of
successful tests, share only 59% of the test set and the top
three engines solely support the same 45% of the BPEL
specification. Consequently, the advantage of portability of
process definitions promised by the usage of the open
standard BPEL can be called into question.

Future work comprises three main aspects: (i) extending
the test set for assessing BPEL standard conformance, (ii)
taking WS-* technologies into account and (iii) increasing
the number of engines under test. The static analysis features
of the BPEL specification [1, pp. 194–205] describe aspects
that must lead to the rejection of a process definition. These
features are not tested for with the current test set, which
focuses solely on support for correct process models and
not the rejection of faulty ones. They could be included
as separate test cases which assert that a faulty process
definition is not deployed. In addition, betsy could use
complex real world BPEL processes as activity integration
tests. This could reveal portability issues concerning the
combination of activities. Moreover, service orchestration is



only a part of what is required in today’s Web Services-
based SOAs. Other standards, such as WS-Security or WS-
ReliableMessaging, are needed for secure and reliable in-
teraction. The conformance testing of contemporary mid-
dleware for these standards would be beneficial. Here, our
tool forms a suitable basis for extension. In this paper, we
have focused on open source engines. Still, there are several
commercial BPEL engines available, for instance Oracle
BPEL Process Manager, IBM Business Process Manager,
and ActiveVOS. The assessment of these engines, and the
comparison between open source and commercial engines,
could also provide valuable insights.

REFERENCES

[1] OASIS, Web Services Business Process Execution Language,
April 2007, v2.0.

[2] C. Peltz, “Web Services Orchestration and Choreography,”
IEEE Computer, vol. 36, no. 10, pp. 46–52, October 2003.

[3] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented
Computing,” Communications of the ACM, vol. 46, no. 10,
pp. 24–28, October 2003.

[4] C. Schroth, T. Janner, and V. Hoyer, “Strategies for Cross-
Organizational Service Composition,” in MCETECH, Mon-
treal, Canada, January 2008, pp. 93–103.

[5] A. Schönberger, “The CHORCH B2Bi Approach: Performing
ebBP Choreographies as Distributed BPEL Orchestrations,”
in SC4B2B, Miami, Florida, USA, July 2010.

[6] B. Hofreiter and C. Huemer, “A Model-driven Top-down Ap-
proach to Inter-organizational Systems: From Global Chore-
ography Models to Executable BPEL,” in IEEE Joint Confer-
ence CEC and EEE, Washington, D.C., USA, 2008.

[7] I. Weber, J. Haller, and J. Mulle, “Automated Derivation
of Executable Business Processes from Choreographies in
Virtual Organisations,” IJBPIM, vol. 3, pp. 85–95, 2008.

[8] S. Harrer, A. Schönberger, and G. Wirtz, “A Model-Driven
Approach for Monitoring ebBP BusinessTransactions,” in
SERVICES2011, Washington, D.C., USA, July 2011.

[9] G. Decker, O. Kopp, F. Leymann, and M. Weske, “Inter-
acting Services: From Specification to Execution,” Data &
Knowledge Engineering, Elsevier, vol. 68, no. 10, pp. 946–
972, 2009.

[10] S. Harrer and J. Lenhard, “Betsy – A BPEL Engine Test
System,” Otto-Friedrich Universität Bamberg, Bamberger
Beiträge zur WIAI 90, July 2012.

[11] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing & Verifi-
cation In Service-Oriented Architecture: A Survey,” Software
Testing, Verificaton and Reliability, 2012.

[12] Z. Zakaria, R. Atan, A. Ghani, and N. Sani, “Unit Testing
Approaches for BPEL: A Systematic Review,” in APSEC,
Penang, Malaysia, December 2009, pp. 316–322.

[13] D. Lübke, “Unit Testing BPEL Compositions,” in Test and
Analysis of Service-oriented Systems. Springer, 2007, pp.
149–171, ISBN 978-3540729112.

[14] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl,
and K. Wolf, “From Public Views to Private Views -
Correctness-by-Design for Services,” in WS-FM, Brisbane,
Australia, September 2007, pp. 139–153.

[15] M. Geiger, A. Schönberger, and G. Wirtz, “Towards Au-
tomated Conformance Checking of ebBP-ST Choreogra-
phies and Corresponding WS-BPEL Based Orchestrations,”
in SEKE, Miami, Florida, USA, July 2011.

[16] W. M. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and
E. Verbeek, “Conformance Checking of Service Behavior,”
TOIT, vol. 8, no. 3, pp. 13:1–13:30, May 2008.

[17] A. Both and W. Zimmermann, “Automatic Protocol Confor-
mance Checking of Recursive and Parallel BPEL Systems,”
in ECOWS, Dublin, Ireland, November 2008, pp. 81–91.

[18] J. Garcı́a-Fanjul and J. T. Claudio de la Riva, “Generation of
Conformance Test Suites for Compositions of Web Services
Using Model Checking,” in Testing: Academic and Industrial
Conference – Practice And Research Techniques. Windsor,
United Kingdom: IEEE, August 2006.

[19] A. P. Mathur, Foundations of Software Testing. Dorling
Kindersley, 2009, ISBN-13: 978-81-317-1660-1.

[20] ISO/IEC 9646-1:1994 – Information technology – Open Sys-
tems Interconnection – Conformance testing methodology and
framework – Part 1: General concepts, ISO, 1994.

[21] D. Bianculli, W. Binder, and M. L. Drago, “Automated
Performance Assessment for Service-Oriented Middleware:
a Case Study on BPEL engines,” in WWW, Raleigh, North
Carolina, USA, April 2010, pp. 141–150.

[22] L. Juszczyk and S. Dustdar, “Script-based Generation of
Dynamic Testbeds for SOA,” in ICWS, Miami, Florida, USA,
July 2010.

[23] D. Sun, Y. Zhao, H. Zeng, and D. Ma, “An Operational
Semantics of WS-BPEL based on Abstract BPEL Machine,”
in SOCA, 2010, pp. 1–4.

[24] IETF, Key words for use in RFCs to Indicate Requirement
Levels, March 1997, rFC 2119.

[25] W3C, Web Services Description Language (WSDL) 1.1,
March 2001.

[26] ——, Web Services Addressing 1.0 - Core, May 2006.

[27] C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro, “On
the Interplay Between Fault Handling and Request-Response
Service Interactions,” in ACSD, Xi’an, China, June 2008, pp.
190–198.

[28] J. Mendling, K. Lassen, and U. Zdun, “On the Transformation
of Control Flow between Block-Oriented and Graph-Oriented
Process Modeling Languages,” IJBPIM, vol. 3, no. 2, pp. 96–
108, 2008.

[29] OMG, Business Process Model and Notation (BPMN) Version
2.0, January 2011.


